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Abstract

The Centre for Adaptive Behaviour and Cognition (ABC) has hypothesised that much human decision-making can be described
by simple algorithmic process models (heuristics). This paper explains this approach and relates it to research in biology on
rules of thumb, which we also review. As an example of a simple heuristic, consider the lexicographic strategy of Take The Best
for choosing between two alternatives: cues are searched in turn until one discriminates, then search stops and all other cues
are ignored. Heuristics consist of building blocks, and building blocks exploit evolved or learned abilities such as recognition
memory; it is the complexity of these abilities that allows the heuristics to be simple. Simple heuristics have an advantage in
making decisions fast and with little information, and in avoiding overfitting. Furthermore, humans are observed to use simple
heuristics. Simulations show that the statistical structures of different environments affect which heuristics perform better, a
relationship referred to as ecological rationality. We contrast ecological rationality with the stronger claim of adaptation. Rules
of thumb from biology provide clearer examples of adaptation because animals can be studied in the environments in which
they evolved. The range of examples is also much more diverse. To investigate them, biologists have sometimes used similar
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simulation techniques to ABC, but many examples depend on empirically driven approaches. ABC’s theoretical frame
be useful in connecting some of these examples, particularly the scattered literature on how information from differe
integrated. Optimality modelling is usually used to explain less detailed aspects of behaviour but might more often be
to investigate rules of thumb.
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1. Introduction

We both work in a research group called the Ce
for Adaptive Behaviour and Cognition (ABC). Its ma
research topic is the cognitive mechanisms by w
humans make decisions. We call these mechan
E-mail address:hutch@mpib-berlin.mpg.de heuristicsand our thesis is that rather simple heuristics
both work surprisingly well and are what humans
(J.M.C. Hutchinson).
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widely use. Simple heuristics correspond roughly
to what behavioural biologists call rules of thumb.
Our aim in this paper is to relate ABC’s research to
biological research on behaviour. One of us (GG) is
the director and founder of ABC, and, like most of the
group, is a psychologist by training; the other (JMCH)
is a behavioural ecologist who has worked in ABC for
the last four years.

For a more thorough review of ABC’s results and
outlook, read the bookSimple Heuristics that Make
Us Smart(Gigerenzer, Todd and the ABC Research
Group, 1999). Another bookBoundedRationality: The
Adaptive Toolbox(Gigerenzer and Selten, 2001) pro-
vides more of a discourse between ABC and other
researchers. In the current paper, we seek to identify
where behavioural biologists and ABC have used sim-
ilar approaches or arrived at similar results, but also
to clarify exactly where the two schools disagree or
diverge on tactics. We thus hope to discover ways in
which each discipline might learn from the other; we
try to be open about potential limitations of ABC’s ap-
proach. This paper is written to inform both biologists
and psychologists.

Before making more general points we start by
giving some examples of the simple heuristics that
ABC has studied, and then some examples of rules
of thumb from biology. These will convey better
than any definition the range of phenomena to which
these terms are applied. The succeeding sections will
deal more systematically with the principles behind
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both alternatives; (2) if both cue values are identical
examine the next cue, otherwise ignore all other cues
and make a decision on the basis of this single cue;
(3) if no cues are left to examine, guess. Such a
process is called lexicographic because it resembles
the obvious way to arrange two items into alphabetical
order: first compare the first letters and only if they
are identical consider the next letter. A hypothetical
biological example might be a male bird that compares
itself with a rival first on the basis of their songs; if
the songs differ in quality the weaker rival leaves,
and only otherwise do both remain to compare one
another on further successive cues, such as plumage or
display.

We have not yet specified the order in which cues are
examined. Intuitively it makes sense to try to look up
the more reliable cues first, and also those that are most
likely to make a distinction.Gigerenzer and Goldstein
(1996) proposed to rank cues by validity; validity is
defined as the proportion of correct inferences among
all inferences that this cue, if considered in isolation,
allows (a tie does not allow inference). With this cue
order, the heuristic has been named Take The Best. This
order might have been individually estimated from a
sample, or learned by instruction, or have evolved by
natural selection.

Amazingly, the predictive accuracy of this heuris-
tic, judged on a real-world dataset about German cities,
was about equal to, or better than, that of multiple re-
gression (Fig. 1; Gigerenzer and Goldstein, 1999, p.
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. Examples of fast and frugal heuristics in
umans

.1. Take The Best

Consider the task of which of two alternatives
hoose given several binary cues to some unobser
riterion. An example is deciding which of two citi
s the bigger, given such cues as whether each

university or has a football team in the prem
eague.Gigerenzer and Goldstein (1996)proposed
he following decision mechanism: (1) consider
ue at a time, always looking up the cue values
3). Fig. 1 further compares the performance of T
he Best against two computationally sophisticate
orithms that also each construct a decision tree
righton, personal communication). Especially, w

he “learning” sample of cities used to construct
rees is small, Take The Best nearly always outperfo
hese methods in accurately comparing sizes of th
aining cities (i.e. in cross-validation).Chater et a

2003)have performed a slightly different analysis
ther sophisticated algorithms, including a three-la

eedforward neural network, and observed a sim
attern. These are surprising and striking results
ecially as at least the comparison against multipl
ression holds in 19 other such real-world compar

asks besides the original city-size example (Czerlinski
t al., 1999).

Take The Best is fast to execute and frugal in
nformation used, since usually not all cues are ex
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Fig. 1. Predictive accuracy of Take The Best (TTB) compared to multiple regression and to two computationally intensive algorithms designed
to generalise well to new samples: C4.5 (Quinlan, 1993) and CART (classification and regression tree:Breiman et al., 1984). Another such
algorithm, MML (Buntine and Caruana, 1992), performed similarly to CART and C4.5. The task is judging which of two German cities has the
larger population, based on nine cues (same dataset asGigerenzer and Goldstein, 1999; Chater et al., 2003). The abscissa specifies the number of
cities in the learning sample to which the regression equation or decision tree is fitted, and the ordinate specifies the predictive accuracy achieved
in the test set (remaining cities of the 83). Results are averaged over 1000 random selections of the learning set. Except for multiple regression,
the strategies can each be expressed as decision trees. The intensive algorithms first grow a tree (for instance, in the case of C4.5, iteratively
using reduction in entropy as a criterion for which cue to use for the next split), and then prune it so as to avoid overfitting. Results for multiple
regression are not shown for learning sets involving fewer cities than the number of cues; the regression algorithm was not one that eliminated
cues of low statistical significance. (Figure provided by H.J. Brighton.)

ined. It is simple in that it involves only comparisons
of binary values, rather than the additions and multi-
plications that are involved in the standard statistical
solutions to the task. This degree of frugality and sim-
plicity applies to the execution of the procedure. If the
prior ranking of cues by validities must be individu-
ally learned, this requires counting, and prior experi-
ence of the task with feedback. Nevertheless, it is still
relatively much simpler to gauge the rank order of va-
lidities than the cue weights in a multiple regression
equation, partly because validities ignore the correla-
tions between cues. Note, however, that ordering by va-
lidities is not necessarily optimal; finding the optimal
order requires exhaustively checking all possible orders
(Martignon and Hoffrage, 2002). In natural biological
examples, a good ordering of cues could have been
achieved by natural selection or by individual learning

through trial and error; such an ordering might perform
very well yet be neither ranked by validity nor opti-
mal. Simulations show that performance remains high
if the ordering of cues only roughly matches validity
(Martignon and Hoffrage, 2002), or if the ordering is
generated by a simple learning algorithm, itself a sim-
ple heuristic (Dieckmann and Todd, 2004; Todd and
Dieckmann, in press).

Take The Best was originally envisaged as a heuris-
tic that processed information already in memory.
However, when subjects are presented with the bi-
nary cues in written form, a variety of experiments
have identified situations under which Take The Best
and similar decision heuristics accurately describe how
people sample and process the information (Rieskamp
and Hoffrage, 1999; Bröder, 2000, 2003; Bröder and
Schiffer, 2003; Newell and Shanks, 2003).
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2.2. Comparing heuristics in structure and
performance

Take The Best can be viewed as a sequence of three
building blocks.

Search rule:examine cues in order of validity, at each
step comparing values between alternatives.
Stopping rule:stop search when a cue discriminates.
Decision rule:choose the alternative indicated by the
discriminating cue.

This can be compared with a different class of
heuristics based on tallying.

Search rule:examine cues in arbitrary order, checking
values of both alternatives but not necessarily consec-
utively.
Stopping rule:stop search aftermcues.
Decision rule:tally thesem cue vales for each alter-
native and choose the alternative with the higher tally.

The amount of information used by Take The Best
(its frugality) varies from decision to decision; the fru-
gality of tallying is alwaysmpairs of cue values. Ifm
is all the cues available, tallying is called Dawes’ Rule
(named after the pioneering work ofDawes, 1979). Tal-
lying is also simple to execute in that it requires only
counting. Unlike Take The Best, it does not require
knowing an order of cues, just which direction each

points (although the accuracy and frugality of tally-
ing can benefit from more complex prior calculations
to setm and eliminate cues likely to be uninforma-
tive). Like Take The Best, the predictive accuracy of
Dawes’ Rule is as good as, or better than, multiple re-
gression for the 20 real-world datasets (Czerlinski et al.,
1999).

With some of these datasets Take The Best per-
formed better than Dawes’ Rule and with others
worse. We now have some understanding of how the
environment (i.e. the statistical structure of cues and
criterion) determines this (Martignon and Hoffrage,
2002). Not surprisingly, in environments in which the
weights from a multiple regression are roughly equal
for all cues (Fig. 2), Dawes’ Rule, which is equivalent to
multiple regression with unit weights, performs better.
Take The Best performs better when each cue weight is
much greater than the next largest one. If each weight
is greater than the sum of all smaller weights, and the
order of weights matches that of validity, multi-
ple regression must produce identical decisions
to Take The Best. Such an environment is called
non-compensatory because in the multiple regression
an important cue cannot be outweighed by less
important cues even if the latter all disagree with
the former. It turns out that many of our 20 example
environments tend towards having non-compensatory
cue structures (Czerlinski et al., 1999): most cues add
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nvironmental structure where Take The Best is as accurate
/4, etc.Right: a compensatory environmental structure where
eflects how much information the cue adds to that already pro
riterion. SeeMartignon and Hoffrage (2002).
a multiple regression (cue values are 0 or 1).Left: a non-compensato
linear weighted combination of cues. The weights of the cue
’ Rule is as accurate as any linear weighted combination. A c
y the better cues, not the independent correlation between the
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little independent information to that provided by the
most informative cues. Take The Best and Dawes’
Rule can be viewed as each taking a bet on a different
environment structure, whereas multiple regression
tries to be a jack of all trades and computes its pa-
rameters to fit the structure (Martignon and Hoffrage,
2002).

It should now be clear that statements of the kind
“This heuristic is good” are ill-conceived, or at least
incomplete. A heuristic is neither good nor bad per
se; rather, some are better than others in specified en-
vironments (e.g. compensatory or non-compensatory)
on specified criteria (e.g. predictive accuracy or fru-
gality). It follows that although ABC has an overall
vision that simple heuristics are the solution that the
brain uses for many tasks, we envisage that the heuris-
tics used for different tasks will vary widely and not
be special cases of one global all-inclusive model. This
suggests a somewhat piecemeal research programme,
which need not be a weakness: the same piecemeal
approach has certainly not held behavioural ecology
back (Krebs et al., 1983). Incidentally, ABC also puts
no general restrictions on the extent to which heuris-
tics are innate or learnt, or applied consciously or un-
consciously. Nor has our research so far focussed on
categorising specific instances of heuristic use along
these dimensions. We expect that in different circum-
stances the same heuristic might fall into more than one
category.

Formal models of heuristics like Take The Best and
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2.3. A heuristic in action

A different decision task is to classify an object
into one of two or more classes, as in medical treat-
ment allocation (Should a patient be in intensive care
or the regular ward?).Fig. 3shows a model of a heuris-
tic that predicts a very high proportion of the deci-
sion outcomes made by London magistrates whether
to grant unconditional bail or to make a punitive de-
cision such as custody (Dhami, 2003; 88% accuracy
in cross-validation was representative). Just like Take
The Best, this heuristic searches cues one at a time, can
stop search after any cue, and the outcome depends on
that cue alone. This is why both Take The Best and
this decision tree are examples of what ABC calls one-
reason decision-making. The decision tree is based on
observations of court outcomes, whereas when magis-
trates were asked how they made their decisions they
told a totally different story consistent with the offi-
cial Bail Act; this specifies that they should consider
many other cues such as the severity of the crime and
whether the defendant has a home. It could be that the
simpler heuristic was used unconsciously, but unfortu-
nately data on outcomes alone provides no convincing
evidence what information was considered or how it
was processed (one alternative heuristic that does con-
sider all cues also had a high predictive accuracy).

2.4. Clever cues
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n early models of heuristics for preferences, s
sTversky’s (1972)Elimination by Aspects, and th
ork on the adaptive decision maker byPayne et a

1993). Yet most recent work has abstained from
alising heuristics or considering the conditions w

hey work well (Kahneman and Tversky, 1996). ABC’s
ork also differs from those parts of cognitive p
hology that are typically strong in modelling, yet r
n versions of expected utility (no search or stopp
ules; e.g. Prospect Theory:Kahneman and Tversk
979) or on Wald’s sequential analysis (which has s
ing rules, but relies on optimisation;Wald, 1947).
hereas ABC’s research explores the benefits of

licity, other schools of psychology try to explain co
lex behaviour by building equally complex cognit
odels.
Some very simple heuristics perform well not
ause of the method of combining cues but bec
hey utilise a single “clever” cue. Loosely speaki
he heuristic lets the environment do much of the w
ne example is the Recognition Heuristic (Goldstein
nd Gigerenzer, 2002): if one alternative is recognis
nd the other not, the recognised alternative is ch

ndependent of further information. It predicts the c
itions for counterintuitive less-is-more effects: Am

cans made better inferences about German city
han about American ones, because with Amer
ities they too often recognised both alternatives
ould not apply the Recognition Heuristic.

Another example of a heuristic relying on a cle
ue is how players catch a ball. To a Martian it mi
ook like we are solving complex algebraic equati
f motion to compute the trajectory of the ball. Stud
ave concluded instead that players might utilis
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Fig. 3. Simple decision tree based on the bail decision outcomes of London magistrates (afterDhami, 2003). The exact number and choice of
cues depended on which randomly selected subset of judgements formed the learning sample (to which the tree was fitted), but the number of
outcomes predicted in cross-validation was typically 85–92%, and this particular tree described 96% of outcomes in fitting.

number of simple heuristics (e.g.McLeod and Dienes,
1996; Oudejans et al., 1999). The Gaze Heuristic is
the simplest candidate and works if the ball is already
high in the air and travelling directly in line with
the player: the player fixates his gaze on the ball,
starts running, and adjusts his speed to ensure that the
angle of the ball above the horizon appears constant
(Gigerenzer, 2004). Another heuristic better describes
actual behaviour: it has the same first two building
blocks (fixate and run) but the third one is modified to
keep the image of the ball rising at a constant speed. If
players manage to follow either heuristic, they and the
ball will both arrive at the same location when the ball
reaches head height; the prediction is not that players
run to a pre-computed landing spot and wait for the
ball. Neither heuristic is optimal, in the sense that they
miss balls that would be catchable by running as fast
as possible towards the point of impact (although the
second heuristic would be optimal if the ball were not
slowed by air resistance: seeBrancazio, 1985). Note

that players are typically unaware of using this sort of
heuristic even though this accurately accounts for their
behaviour. Biologist readers will probably already be
asking whether other animals might also use similar
heuristics: indeed, maintenance of a constant optical
angle between pursuer and target has been found in
a variety of animals besides humans, including bats,
birds, fish and insects (Shaffer et al., 2004). Surely, it
is not the only heuristic that we share with animals.

3. Some simple rules of thumb from biology

We now consider examples of rules of thumb from
biology; there are many more that we could have
chosen. Our aim in this section is to give a broad
flavour of this area of biological research, and so we
deliberately leave most comparisons with ABC’s ap-
proach until later. The diversity of the biological ex-
amples and the lack of theoretical connections between
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many of them are parts of the picture that we wish to
convey.

A recently described example is the method by
which the antLeptothorax albipennisestimates the size
of a candidate nest cavity (Mallon and Franks, 2000;
Mugford et al., 2001). Natural nest sites are narrow
cracks in rocks, typically irregular in shape. The ants’
solution is first to explore the cavity for a fixed pe-
riod on an irregular path that covers the area fairly
evenly. While doing this it lays down an individually
distinct pheromone trail. It then leaves. When it re-
turns it again moves around but on a different irregular
path. The frequency of encountering its old trail is used
to judge size (rate∝ 1/area). This “Buffon’s needle al-
gorithm” is remarkably accurate: nests half the area
of others yielded reencounter frequencies 1.96 times
greater.

Another example concerns how the waspPolistes
dominulus constructs its nest (Karsai and Ṕenzes,
2000). The nest is a tessellation of hexagonal cells
that grows as each new cell is added. Up to the
15-cell stage only 18 arrangements of cells have been
observed. These arrangements are all compact, which
ensures that less new material is required and that
the structure is strong. However, these optimality
criteria are inadequate explanations of why just these
18 arrangements: economy of material predicts 155
optimal arrangements, whereas not all the observed
structures maximise compactness. A better explana-
tion is a construction rule in which the wasp places
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there is some particular advantage of each individ-
ual rigorously following simple rules. But other ex-
amples do not concern coordination. Perhaps it is
just that social insects are small animals with small
nervous systems. This might matter because they re-
ally can only follow simpler rules than higher an-
imals, but it could be merely that biologists are
readier to view them as robotically following sim-
ple rules than larger animals that more closely re-
semble ourselves. Instead our suspicion is that the
plethora of good examples of rules of thumb in so-
cial insects is because this way of thinking about
mechanisms happens to have become prevalent in this
research community, each new nice example stim-
ulating similar interpretations of other phenomena.
Perhaps then, rules of thumb will grow in promi-
nence when researchers on other organisms realise
the concept’s usefulness. A more pessimistic expla-
nation is that because social insects are small, study-
ing their behaviour is difficult, and our knowledge
incomplete, which allows simple rules of thumb to
be adequate explanations. According to this view-
point (suggested to us by a social-insect worker re-
sponsible for some of the nicest examples of rules
of thumb!), further research will lead to simple rules
of thumb being rejected in favour of more complex
mechanisms.

Some of the earliest analyses of rules of thumb
came from considering the varied ways that simple an-
imals locate stimuli (Fraenkel and Gunn, 1940). For
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ith one exception that plausibly follows from a sm
istake in execution of the rule. Further unexpe

orms appear as the nest grows beyond 15 cells
hen it is plausible that the wasp does not visit
otential building sites, or that small differences
all age get harder to judge as the structure
lder.

Social insects provide the richest source of r
f-thumb examples (e.g.Müller and Wehner, 198
eeley, 1995; Camazine et al., 2001; Detrain
eneubourg, 2002; Sato et al., 2003). Some of thes
xamples concern mechanisms that ensure tha
ividual behaviour is well integrated, when perh
nstance, a copepod (a planktonic crustacean) f
ith two light sources follows a trajectory as if
ere pulled towards each source with a force pro

ional to source intensity/distance2. Such apparent
omplex behaviour is explicable by the simple r
hat the animal adjusts its orientation so as to m
mise the amount of light falling on a flat eye. Mo
ecent research has examined how a female mo
ates a pheromone-producing male (Kennedy, 1983).
he applies the simple rule of heading upwind w

he pheromone concentration lies above a partic
hreshold. This will not always get her to the male,
ause variation in wind direction creates a meande
lume of pheromone. When she breaks out of a plu

he lowered pheromone concentration triggers he
ast back and forth cross wind with increasing am
ude until she reencounters the plume. Analytic mo
ave estimated the efficiency of different method



104 J.M.C. Hutchinson, G. Gigerenzer / Behavioural Processes 69 (2005) 97–124

taxis depending on aspects of environmental structure
such as turbulence (Balkovsky and Shraiman, 2002;
Dusenbery, 2001).

The two other areas of behavioural biology that
make most frequent reference to rules of thumb are
mate choice and patch-leaving. A paper byJanetos
(1980)seems responsible for a tradition in behavioural
ecology of modelling mate choice as a process of
sequential assessment of candidate males. The two
most discussed rules are for a female to accept the
first male above a preset threshold or for a female to
view a preset number ofN males and then return to
the best (“best-of-N” rule). Janetos argued that ani-
mals follow simple rules that can achieve good but
not optimal performance (Janetos and Cole, 1981).
Other behavioural ecologists agreed that information
constraints would restrict what sort of rule could be
used, but preferred to hypothesise that a rule’s pa-
rameters were optimised for the environment (Real,
1990a). However, neither of these two rules explains
adequately the patterns of return typically observed
nor effects of the quality of previously encountered
males on acceptance decisions, so somewhat more
complex rules may be necessary (Luttbeg, 1996;
Wiegmann et al., 1996; Hutchinson and Halupka,
2004).

Patch-leaving rules represent more of a success for
modelling. The idea is that food items occur in patches,
and that they are depleted by the forager, which should
thus at some stage move to another patch. The ques-
t is
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decreases through some sort of habituation response,
but the effect of finding a host further decreases the
tendency to stay (Driessen and Bernstein, 1999). Be-
tween similar parasitoid species there is much varia-
tion in whether finding a host increases or decreases
the tendency to stay, but we do not yet know enough
about the environmental structure in most of these ex-
amples to judge whether the theory explains these dif-
ferences (van Alphen et al., 2003; Wajnberg et al.,
2003).

Models of patch-leaving decision rules show a his-
torical progression from unbounded rationality assum-
ing omniscience towards more realistic assumptions
of what information is available. At the omniscient
end is the Marginal Value Theorem (Charnov, 1976)
specifying that the optimal switching point is when
the instantaneous rate of the reward falls to the mean
rate in the environment under the optimal policy. But
how should the animal know this mean rate without
knowing the optimal policy already?McNamara and
Houston (1985)proposed a simple iterative algorithm
by which this might be learnt while foraging efficiently.
Another problem is that when prey are discrete items
turning up stochastically, the underlying rate (=proba-
bility) of reward is not directly observable. The opti-
mality models ofIwasa et al. (1981)and others are one
response to this situation, but another is the simpler
rule, not derived from an optimality model, of giving
up after a constant time without finding an item. If
the giving-up time parameter is appropriate, the per-
f rule
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ecause the success suggests that it is a better
ater, it was realised that if an independent cue
vailable indicating initial patch quality, even in t
econd type of environment the decremental dec
ule can be better (Driessen and Bernstein, 1999). This
ts empirical research on the parasitoid waspVenturia
anescens, which lays its eggs in caterpillars: the co
entration of host scent sets the tendency to stay
.

ormance may come close to that of the optimum
Green, 1984). In the real world, in which environme
al parameters are uncertain, it could be that the giv
p time rule works better than the optimum compu

or a simple model of the environment. A more
ent example concerns when a bee should leave
nflorescence for another; the problem is that b
lebees increasingly revisit flowers that they have
mptied because they can only remember the las
isited.Goulson (2000)proposed that a good soluti
hat agreed with bumblebees’ observed behaviour
eave once two empty flowers are found. Other w
rs have modified optimality models to incorpor
haracteristics of known or hypothesised psycholog
echanisms, such as Weber’s Law, Scalar Expec
heory and rate-biased time perception (Kacelnik and
odd, 1992; Todd and Kacelnik, 1993; Hills and Ad
002).
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4. Heuristics are precise testable models of
proximal mechanism

Having used specific examples to give a flavour first
of the ABC programme and then of biological research
on rules of thumb, we now start to explain more about
the principles and assumptions underlying the former.
The ABC programme has two interrelated components:
the first is to study the heuristics that people actually
use, the second is to demonstrate in which environ-
ments a given heuristic performs well. We call the first
the study of the “adaptive toolbox”, and the second the
study of the “ecological rationality” of heuristics. The
next two sections address how ABC models the adap-
tive toolbox.

ABC is concerned with the cognitive process of
decision-making, and in particular with which sources
of information are considered and how they are pro-
cessed in combination. Our concern is with mecha-
nism, not merely with how behaviour depends on cue
values (what optimality modellers call the policy). Al-
though observations of the policy can lead us to reject
some candidate mechanisms, this is not a sufficient test
because a variety of mechanisms can generate identi-
cal policies. For instance, Take The Best makes deci-
sions indistinguishable from multiple regression if the
cue weights are non-compensatory. They are, however,
distinguishable if one can monitor how many cues are
examined and in which order.

Much decision-making depends on information al-
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how internet sites, for instance, should present infor-
mation. Using the program Mouselab it is possible to
present information on a computer screen but require
subjects to click on a button to read a cue value, so that
we at least know the order in which they seek informa-
tion and when they stop information search (Payne et
al., 1993). Another potential approach is eye tracking.

Combining sources of information is a feature of
decision-making in not just animals but even bacteria
and plants: for instance, for a seed to germinate in re-
sponse to springtime warmth or photoperiod often re-
quires weeks of winter chilling to remove dormancy
(Bradbeer, 1988); this requirement prevents prema-
ture germination in autumn. Some insects show strik-
ingly similar requirements before emerging (Tauber
and Tauber, 1976). The mechanism in plants cannot
be the same as what is known of the process in the in-
sect brain (Williams, 1956), but in principle the same
algorithm might describe how the cues interact. ABC’s
level of analysis is algorithmic, in the sense ofMarr
(1982). One advantage of this approach is that conclu-
sions might apply across different decisions and dif-
ferent organisms; indeed, they also have relevance for
programming computers. Another advantage is that al-
gorithmic explanations are often simple enough to be
readily comprehensible. To understand how comput-
ers perform a sorting task, for instance, it is natural to
seek explanations at the algorithmic level, ignoring the
chip’s circuitry.

In some invertebrates remarkable progress has been
m rms
o our
k ems
( ;
M e
n BC
c such
t ow
t s oc-
c ities
s tic),
r ck-
i test
w d by
a cifi-
c The
fi etic
R ions
eady present in memory. We cannot rely on s
eports to know how we access such memories
ome information is obtainable from timing. For
tance, one might hypothesise that humans rank
igit numbers using the lexicographic strategy of
omparing the first digits alone, and only in the cas
tie looking at the second digit. In this example,

exicographic heuristic must be rejected because e
ments have shown that the timing of the decision d
epend on the second digit even if the first digits d
Moyer and Landauer, 1967).
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esults ofBröder and Schiffer (2003)suggest a differ
nce. But external search, besides being much
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uch as recognition memory (Recognition Heuris
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esonance Imaging (fMRI) to test whether decis
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made when the Recognition Heuristic can be applied
are indeed accompanied by activation of brain regions
underlying recognition memory but not of those un-
derlying guessing or recollection memory (Volz et al.,
in press).

A complementary approach to testing the physical
reality of a proposed heuristic is to attempt to model
it using a framework such as ACT-R (Anderson et al.,
2004). This is based on a restricted set of processing
modules the properties of which are constrained by
numerous independent studies. Translating a heuristic
into ACT-R both confirms that it is cognitively plausi-
ble and makes testable predictions about reaction times
and fMRI results. ABC has made a start with using
ACT-R, for a model of a version of the Recognition
Heuristic (L. Schooler, R. Hertwig, personal commu-
nication).

The heuristics that ABC describes may rely on input
variables that require complex calculations to compute.
For instance, the ball-catching heuristics rely on the
ability to track a moving object against a noisy back-
ground, which is developing in two- or three-month-old
infants (Rosander and von Hofsten, 2002), but which is
extremely difficult to program computers to do. ABC’s
heuristics exploit these abilities but do not attempt to
explain their mechanisms. The underlying assumption
is of a hierarchical organisation of cognitive process-
ing: heuristics on top of evolved or learned abilities.
There is good evidence of a hierarchy in insects, be-
cause much of the processing is peripheral and elec-
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so for routine decisions, and also whether it is adaptive
for them to bother.

The heuristics that ABC has proposed are highly
specified; they are readily convertible to computer code
and they yield bold quantitative predictions that are
amenable to testing. This contrasts with most models
of heuristics in cognitive psychology, which are often
specified only at a level of detail described by block
diagrams and arrows indicating that one quantity has
some unquantified influence on another. Such models
are typically so vague in their predictions that they are
impossible to test. In order to facilitate rigorous testing,
ABC tries to avoid heuristics with free parameters that
must be fitted anew to each dataset or to each individual,
unless they can be estimated independently. This is not
because we necessarily deny that, for instance, there are
individual differences in personality that might affect
how or which heuristics are applied.

Given that real heuristics have not been written by
a programmer but have evolved by the messy process
of natural selection, and given that they are enacted by
neurones not silicon, ABC’s precisely specified models
seem likely to be simplifications capturing the broad
principle but eventually requiring adjustments in the
detail. Nevertheless, on the current evidence perhaps
less adjustment will be necessary than one might sup-
pose.

5. The attractions of simplicity
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tances. A computing analogy might be some ti
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nows only higher level languages (cf.Todd, 1999).

Equally, ABC does not deny that humans can c
ciously perform highly complex calculations to co
are options. The question is whether they trouble t
The heuristics studied by ABC are simple in co
arison with standard statistical procedures applie

he same task. Proposals by other psychologists fo
ur minds tackle these tasks typically also involve m
omplex processes such as Bayesian probability u

ng. Part of the reason why ABC’s heuristics can
imple is that as their input they can utilise evolve
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hat may involve complex data processing.
It is not just Occam’s Razor that has made A

avour simple models. But we will start off by me
ioning the weakest reason. That is that with sim
euristics we can be more confident that our brain
apable of performing the necessary calculations.
eakness of this argument is that it is hard to judge w
omplexity of calculation or memory a brain mig
chieve. At the lower levels of processing, some
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man capabilities apparently involve calculations that
seem surprisingly difficult (e.g. Bayesian estimation in
a sensorimotor context:Körding and Wolpert, 2004).
So, if we can perform these calculations at that level
in the hierarchy (abilities), why should we not be able
to evolve similar complex strategies to replace simple
heuristics?

One answer is that simple heuristics often need ac-
cess less information (i.e. they are frugal) and can thus
make a decision faster, at least if information search
is external. Another answer, and a more important ar-
gument for simple heuristics, is the high accuracy that
they exhibit in our simulations (e.g. seeFig. 1). This
accuracy may be because of, not just in spite of, their
simplicity. In particular, because they have few param-
eters they avoid overfitting data in a learning sample,
and consequently generalise better across other sam-
ples. The extra parameters of more complex models
often fit the noise rather than the signal (MacKay, 1992;
Hertwig and Todd, 2003). Of course we are not saying
that all simple heuristics are good: only some simple
heuristics will perform well in any given environment.

Although we would argue strongly that ABC has
made an important advance in demonstrating how well
simple frugal heuristics can perform, we do not yet
know how generally the claim of “simple is good” can
be extended. In the hope of stimulating others to test our
claims, we now play the devil’s advocate and question
the generality of our results. For instance, we cannot
claim to have evidence that simple heuristics perform
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tance. For instance, the memory capabilities of small
food-storing birds seem astounding by the standards
of how we expect ourselves to perform at the same
task (Balda and Kamil, 1992). Some better examined
biological examples suggest unexpected complexity:
for instance, pigeons seem able to use a surprising di-
versity of methods to navigate, especially considering
that they are not long-distance migrants (Wiltschko and
Wiltschko, 2003; but cf. Wallraff, 2001). The greater
specialism of other animals may also mean that the en-
vironments that they deal with are more predictable,
and thus that the robustness of simple heuristics may
no longer be such an advantage (cf. the argument of
Arkes and Ayton, 1999, that animals in their natural
environments do not commit various fallacies because
they do not need to generalise their rules of thumb to
novel circumstances).

A separate concern is that for morphological traits
there are plenty of examples of evolution getting stuck
on a local adaptive peak and not finding its way to the
neatest solution. The classic example is the giraffe’s
recurrent laryngeal nerve, which travels down and then
back up the neck because in all mammals it loops round
the aorta. Nobody knows how common such a situation
might be with cognitive traits. It could be that humans’
ability to learn through experience makes them more
readily adopt simple heuristics than other animals that
are more rigidly programmed and where natural selec-
tion alone is responsible for the adaptation.

Another way to consider the recurrent laryngeal
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t al., 1984).

It is tempting to propose that since other anim
ave simpler brains than humans, they are more l

o have to use simple heuristics. But a contrary a
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hardwired the weights (for instance, by controlling sen-
sitivity of the receptors for different cues); then the in-
sect need simply tally these ready-weighted cues, yet
it achieves what to us looks like a harder weighted-
additive calculation (Franks et al., 2003).

6. Adaptation and ecological rationality

The following sections deal with the fit of the
heuristics to the environment, which ABC refers to as
ecological rationality. In this section, we compare and
contrast this with biologists’ concern with adaptation.
Adaptation is the assumption underlying optimality
modelling, a technique that has dominated behavioural
ecology, and the next section will consider how useful
this might be in investigations of cognitive mechanism.
We will then turn from mechanisms to the other blade
of Simon’s scissors (1990), the environment.

ABC’s research programme is very much concerned
with heuristics working well in the environment in
which they perform. Biologists mostly deal with rules
of thumb that are adapted through natural selection, but
the human heuristics that ABC studies have also been
honed by individual or cultural learning of what works
well. A likely possibility is that natural selection has set
humans up with a set of heuristics (the adaptive tool-
box:Gigerenzer et al., 1999) each member of which we
can readily learn to apply as appropriate to a specific
environment. Or the building blocks of heuristics (such
a ed to
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result that has worried behavioural biologists is that
in operant “self-control” experiments animals tend to
forgo the option with a higher long-term reward rate
in favour of one in which less food is delivered but
with less delay (Logue, 1988). Recently,Stephens and
Anderson (2001)suggested that a rule of thumb based
on maximising short-term gain rate makes adaptive
sense when the same reward structure as in the self-
control experiments is presented in a patch-leaving
context. In that context the difference in short-term
rates between staying a short time or a long time in a
patch agrees with, and even amplifies, the difference in
long-term rates (see alsoReal, 1992; Stephens, 2002;
and cf.Kareev, 2000). The argument is that the op-
erant self-control task in which the decision rule had
first been recognised, and in which it appeared dele-
terious, is an artificial situation, which played no part
in the rule’s evolution or maintenance. Such a result
mirrors some of ABC’s work (and that of other psy-
chologists) pointing out that what have been viewed as
maladaptive biases in humans are the by-products of
rules that make adaptive sense in an appropriate envi-
ronment (e.g.Arkes and Ayton, 1999; Hoffrage et al.,
2000; Gigerenzer, 2000, Chapter 12).

The biologists’ evolutionary perspective at least
made them hanker for an adaptive explanation for the
self-control results. Biologist readers may be amazed
that adaptation is not at all a universal consideration
in psychology. In fact, human psychologists do have
a plausible defence. Many argue that our brain has
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The idea of adaptation is, of course, old hat to m
iologists; they see no reason to believe that cogn

s not adapted like everything else—hence, the fie
ognitive ecology (Dukas, 1998; Shettleworth, 199).
evertheless, biologists face the same problem as
hologists that much behaviour must be studied in
rtificial environment of the laboratory where its ad

ive significance need not be obvious. For instance
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By “adaptation” biologists imply not only that a tra
ts the environment but that it has been shaped b
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environment for that task. Therefore, claims of adap-
tation of heuristics are vulnerable to the arguments of
the biologistsGould and Lewontin (1979), who were
concerned about many claims of adaptation in biol-
ogy being mere “just-so stories”. Unfortunately, hu-
man psychologists are not able to utilise many of the
lines of evidence that biologists apply to justify that a
trait is adaptive. We can make only informed guesses
about the environment in which the novel features of
human brains evolved and, because most of us grow
up in an environment very different to this, the cog-
nitive traits that we exhibit might not even have been
expressed when our brains were evolving (Dawkins,
1982, p. 38). Biologists use a more detailed fit of trait
to environment as evidence for adaptation, but because
simple heuristics have few characters (e.g. parameters),
even this approach may be unavailable.

It thus would be a weak argument (which ABC
avoids) to find a heuristic that humans use, then search
for some environment in which that heuristic works
well, and then claim on this basis alone that the heuris-
tic is an adaptation to that environment. The heuristic
may work well in that environment, but that need not
be the reason why it evolved or even why it has sur-
vived. For instance, our colleagues L. Schooler and R.
Hertwig (personal communication) have constructed
a model demonstrating that for a type of Recognition
Heuristic it can be beneficial that we forget out-of-date
information at a certain rate; but memory is used for a
diversity of other purposes, so they rightly avoid claim-
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ically rational deliberately omits any implication that
this is why the trait originally evolved, or has current
value to the organism, or that either heuristic or envi-
ronment occur for real in the present or past. Ecologi-
cal rationality might then be useful as a term indicating
a more attainable intermediate step on the path to a
demonstration of adaptation. There is nevertheless a
risk that a demonstration of ecological rationality of
a given heuristic in a given environment will mislead
someone who uses this evidence alone to infer adap-
tation. Think of the Victorian habit of noting the most
fanciful resemblance of an animal to a part of its en-
vironment as an adaptation. This reached its apogee in
such ridiculous illustrations as pink flamingos camou-
flaged against pink sunsets (Gould, 1991, Chapter 14;
sexual selection is the real explanation for most bright
plumage).

7. Why not use optimality modelling?

Optimality modelling is used in behavioural ecology
mostly as a test of whether a particular adaptive argu-
ment explains a particular phenomenon. The model is
constructed to include the components of the expla-
nation (maximised currencies, constraints, trade-offs,
etc.) and often a deliberate minimum of anything else.
The next stage is to calculate the optimal behaviour
given these assumptions. If these predictions match
empirical data, one can claim to have a coherent expla-
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proved its practical utility in dominating the successful
fields of behavioural ecology and biomechanics, mak-
ing testable predictions that have not only stimulated
empirical research but also strikingly often been well
supported by the data. So, why does ABC not take this
road?

Typically one prediction of an optimality model
is the policy, which describes what behaviour is
performed given any specified value of an individual’s
external environment and internal state. Although the
policy can itself be viewed as a decision rule, it is
the mechanisms generating policies that interest ABC
and other psychologists. Behavioural ecologists do
believe that animals are using simple rules of thumb
that achieve only an approximation of the optimal
policy, but most often rules of thumb are not their
interest. Nevertheless, it could be that the limitations of
such rules of thumb would often constrain behaviour
enough to interfere with the fit with predictions. The
optimality modeller’s gambit is that evolved rules of
thumb can mimic optimal behaviour well enough not
to disrupt the fit by much, so that they can be left as a
black box. It turns out that the power of natural selec-
tion is such that the gambit usually works to the level
of accuracy that satisfies behavioural ecologists. Given
that their models are usually deliberately schematic,
behavioural ecologists are usually satisfied that they
understand the selective value of a behaviour if they
successfully predict merely the rough qualitative form
of the policy or of the resultant patterns of behaviour.
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cisions might usefully respond, although it may be indi-
rect cues that are actually used. Conversely, optimality
modelling is helpful in pointing out what aspects of the
environment a decision heuristic should ignore. In cer-
tain cases the optimal policy may be so simple that it can
be generated by a simple heuristic. For instance, if items
are randomly (Poisson) distributed across patches,
Iwasa et al. (1981)showed that the optimal leaving rule
is to spend a constant time in each patch regardless of
foraging success. In other cases an examination of the
form of the optimal policy can suggest a heuristic that
would come close to generating such a policy. Thus, for
a different patch-leaving model,Green (1984)plotted
against the time spent on the patch the critical num-
ber of prey items that must have been found to make
it worthwhile to stay longer. The calculations required
were computationally involved but the thresholds fell
quite close to a straight line through the origin, suggest-
ing a simple rule that would perform close to optimally.

(2) If enacting the optimal policy would require,
say, unrealistically extensive knowledge or demanding
memory requirements to be achievable, it is possible
to introduce more realistic information constraints into
an optimality model. Several optimality models exam-
ine the effects of a restricted memory on performance
and behaviour (e.g.Hutchinson et al., 1993; Roitberg
et al., 1993; B́elisle and Cresswell, 1997). More com-
mon, and differing only in degree of specification, is to
constrain the rule of thumb to be of a particular non-
optimal form but use optimality to specify the values
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But ABC’s focus on process means that it
oncerned with a much more detailed prediction
ehaviour. A good model of the process can lea
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re mute. For instance, the ball-catching heuris
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he ball while running, the precise running spee
nd when players will run in a slight arc. All the
redictions concern observable behaviours.
xample ofPolistesnest construction (Section3) also
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Nevertheless, there are several ways in which
imality modelling can help to suggest what rules
humb the animal uses.

(1) The optimal policy provides clues. It does
east indicate aspects of the environment to which
f any parameters. The expectation is that an ada
euristic lies on a local optimum. Such an appro
as been used both by biologists and members of

or mate choice rules (Real, 1990b; Wiegmann a
ukhopadhyay, 1998; Todd and Miller, 1999; Hutch

on and Halupka, 2004), andReal (1990a)points ou
hat in the appendix to Simon’s classic paper on
sficing, Simon (1956)also uses optimality to set t
hreshold. As we learn more about an organism’s
ory and cognitive capacities, and so can add ever
ealistic constraints to an optimality model, one m
ope that the different approaches converge in
redictions.

(3) Optimality modelling can be applied to the p
esses of gathering information and stopping se
husFawcett and Johnstone (2003)calculated the op

imal order of cues to examine given cues that diffe
n costs and informativeness.Luttbeg (1996)calculated
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how a female should concentrate sampling effort on
those males that earlier had appeared the most promis-
ing.

(4) Optimality modelling may help us in providing
a gold standard against which to compare performance
of candidate heuristics. If a simple heuristic performs
almost as well as the optimum, there is less need to
search further for a better heuristic. An ABC paper in
this spirit isMartignon and Laskey (1999), which com-
putes a Bayesian network against which to compare the
performance of Take The Best.

(5) Any fine-scale mismatch between optimality
prediction and observation can be suggestive of what
rule of thumb is being used (although there are other
potential reasons for a lack of fit—errors in model
specification, evolutionary time lags, etc.). Even if the
nature of the mismatch does not itself suggest the rule of
thumb, it at least highlights a problem to which the so-
lution may be the mechanism used by the animal. Thus,
Müller and Wehner (1988)were stimulated by the
systematic errors that ants make in path integration (i.e.
their deviation from the optimal solution of heading
straight back to the nest) to suggest a rule of thumb that
explains these errors. This rule is to average the angles
of each outward step, weighted by the distance moved.
Another example is that the classic optimality models
of diet choice predict a sudden switch from complete
unselectivity to complete specialisation as density in-
creases. However, experiments typically find gradually
increasing partial preferences instead (e.g.Krebs et al.,
1 ne-
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1999). However, there remains a more fundamental
reason for ABC’s objection to the routine use of the
optimality approach. There are a number of situations
where the optimal solution to a real-world problem can-
not be determined. One problem is computational in-
tractability, such as the notorious travelling salesman
problem (Lawler et al., 1985). Another problem is if
there are multiple criteria to optimise and we do not
know the appropriate way to convert them into a com-
mon currency (such as fitness). Thirdly, in many real-
world problems it is impossible to put probabilities
on the various possible outcomes or even to recog-
nise what all those outcomes might be. Think about
optimising the choice of a partner who will bear you
many children; it is uncertain what partners are avail-
able, whether each one would be faithful, how long
each will live, etc. This is true about many animal de-
cisions too, of course, and biologists do not imagine
their animals even attempting such optimality calcula-
tions.

Instead, the behavioural ecologist’s solution is to
find optima in deliberately simplified model environ-
ments. We note that this introduces much scope for mis-
understanding, inconsistency and loose thinking over
whether “optimal policy” refers to a claim of optimal-
ity in the real world or just in a model. Calculating
the optima even in the simplified model environments
may still be beyond the capabilities of an animal, but
the hope is that the optimal policy that emerges from
the calculations may be generated instead, to a lesser
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977). This was the stimulus to suggest various refi
ents that would explain the difference, such as

he birds make discrimination errors, or that they h
o estimate prey density or value with learning ru
hat are sensitive to runs of bad luck. Such constr
nd mechanisms can be incorporated in a new ge

ion of more realistic optimality models (e.g.Rechten
t al., 1983; McNamara and Houston, 1987a; Bélisle
nd Cresswell, 1997). As long as the additional h
otheses are confirmed by testing further indepen
redictions, this process of successively improv
odels can progressively inform us about cogn
echanisms (Cheverton et al., 1985).
Thus we would encourage optimality modellers

onsider decision processes to be interesting topic
heir technique might address. Indeed, the rational
sis school of psychology has had some success
hat approach (Anderson, 1990; Chater and Oaksfo
evel of accuracy, by a rule that is simple enough
n animal to follow. The animal might be hardwir
ith such a rule following its evolution through na

al selection, or the animal might learn it through t
nd error. There remains an interesting logical ga

he procedure: there is no guarantee that optima
utions to simplified model environments will be go
olutions to the original complex environments. T
iologist might reply that often this does turn out to

he case, otherwise natural selection would not hav
owed the good fit between the predictions and obse
ions. Success with this approach undoubtedly dep
n the modeller’s skill in simplifying the environme

n a way that fairly represents the information av
ble to the animal. The unsatisfying uncertainty of h

o simplify is often not appreciated.Bookstaber an
angsam (1985)argue that by choosing simple mod
ith many of the uncertainties ignored, we introd
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a bias in the optimal behaviour predicted, favouring
complex rules over coarser ones.

The same criticism about simplification of real en-
vironments can also be made of any simulation of a
heuristic in a model environment, so much of ABC’ s
research is as vulnerable to the argument as optimal-
ity modelling. ABC has tried to avoid the criticism by
using data from a variety of real-world environments.
(This technique is rare in biology, but an analogous ex-
ample isNakata et al.’s (2003)testing of web-relocation
rules in spiders; rather than make assumptions about
the temporal and spatial autocorrelations in prey cap-
ture rates, they used observed rates from sticky traps
set out in the field.) ABC demonstrated the high per-
formance of Take The Best on a diverse set of 20
real-world problems (Czerlinski et al., 1999). It was
hoped that the environmental structures in these exam-
ples would be representative of problems in other do-
mains. However, these supposedly real-world problems
are still gross simplifications from the sorts of decisions
that we really face. For instance, the performance cri-
teria were just frugality and accuracy, it had already
been determined which cues were available, and there
were no search costs. Another limitation is that one
can judge how far the performance results are general
to other decision problems only by understanding what
statistical structures in these environments influenced
performance of the heuristics tested. The best way to
prove that a statistical structure has the hypothesised
effect on performance is to construct simple model
e

8

rest
i n-
m eir
i on-
m ask
w cog-
n opri-
a

est
w ects
o non-
c m-
p any

negative correlations with each other (specifying that
high values of a cue always indicate, other things being
equal, a better option;Johnson et al., 1989; Shanteau
and Thomas, 2000). Negative correlations might be
typical of competing commercial products, because,
for a product to survive in the market place, traits in
which it is weak must be compensated by other desir-
able features (e.g. for cars, a low maximum speed may
be associated with low price or high safety). This is
a different environment structure from city sizes, and
also perhaps from male traits used by females for mate
choice, where quality variation might be expected to
generate a positive correlation between all traits (which
is observed in some examples, but others show no cor-
relation: Candolin, 2003). Other aspects of environ-
ment structure that ABC has analysed are “scarcity”
(the number of objects relative to the number of cues
in the learning sample;Martignon and Hoffrage, 2002)
and the skewness of frequency distributions (Hertwig
et al., 1999).

Behavioural ecology has also considered what as-
pects of the environment favour different rules of
thumb, but often by using analytic techniques in com-
bination with the optimality approach. We have already
mentionedIwasa et al.’s (1981)derivation of optimal
patch-leaving rules, showing that how evenly prey are
spread amongst patches determines whether a prey cap-
ture should make the predator more or less likely to
move. Another example isMcNamara and Houston’s
(1987b)derivation of how the forgetting rate of a sim-
p the
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. Environment structure

It should already be clear that ABC has an inte
n identifying what statistical properties of the enviro

ent allow particular heuristics to perform well. Th
dentification enables us to predict in which envir

ents a heuristic is used. We might then go on to
hether such statistical properties are easy to re
ise, and hence how a heuristic for selecting appr
te heuristics might work.

When describing the example of Take The B
e have already mentioned two pertinent asp
f environment structure, whether the cues are
ompensatory (Fig. 2) and the size of the learning sa
le (Fig. 1). Another aspect is whether cues show m
le linear-operator memory rule should depend on
ate at which the environment changes.

Autocorrelation in food supply may be an imp
ant aspect of environment structure for animals.
ould predict that nectar-feeders would avoid ret

ng to a flower immediately after exploiting it, b
eturn once it has had time to refill. Whereas b
pecies feeding on aggregated cryptic invertebrate
ain in a good spot (win-stay), nectar-feeding b

ndeed tend to “win-shift” in the short-term (Burke and
ulham, 2003). Even naive captive-reared honeyea
anthomyza phrygiamore easily learned to win-sh

han win-stay with short delays between feeding
ions, but vice versa with long delays (Burke and
ulham, 2003). An easy rule to ensure returning
egular intervals to a resource is to follow the sa
oute repeatedly; such traplining behaviour is show
ectar-feeding birds and insects as well as birds f
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ing on flotsam along stream edges (e.g.Davies and
Houston, 1981; Thomson, 1996). Spatial, rather than
temporal, autocorrelation may be the important statis-
tical structure determining movement rules for species
feeding on non-renewing hidden food (e.g.Benhamou,
1992; Fortin, 2003).

9. Social rationality

For both humans and animals, an important compo-
nent of their environment is social; that is it is generated
by other individuals. Even plants can be considered to
show social heuristics: for instance, seeds may use cues
such as daily temperature fluctuations to sense when
competitors are absent (Thompson and Grime, 1983).
A simple human example of an adaptive social heuris-
tic is to copy the choice of meal of someone who is
more familiar with the restaurant.

There has been much analysis in both the human and
biological literature concerning when it pays to copy
other individuals (e.g.Henrich and Boyd, 1998; Sirot,
2001). One specific example concerns escape flights
in flocks of wading birds. Birds in a flock that see
their neighbours flying up should immediately copy
them if it was a predator that alarmed the first bird. But
how to avoid numerous false alarms? Checking for the
predator themselves may be unreliable and cause de-
lay, so insteadLima (1994)suggested that they might
use the simple rule of flying only if at least two other
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between visits, but increase them if weaker production
caused the decline.

In the case of many social situations, what heuris-
tic is adaptive for one player depends on the heuristic
used by another. If this is mutual, the obvious method of
analysis is game theory, which is widely used in theo-
retical biology. Most biological game theory centres on
finding the Evolutionary Stable State (Maynard Smith,
1982), where both players behave optimally given the
strategy of their opponent. This takes us back to ABC’s
objections to routinely using an optimality approach,
but many game-theoretic biological models are often
so abstract that the lack of realism of strategies such
as hawk and dove is not an issue. This does not mean
that they need be useless in helping us understand rules
of thumb; for instance, game-theoretic analysis of the
handicap principle has transformed our expectations of
what sorts of mate-quality cues are attended to (Grafen,
1990). Nevertheless, as game-theoretic models become
tailored more closely to real situations, it can turn out
to be critical how we model what information is avail-
able to each player, and thus how they can “negotiate”
(e.g.Barta et al., 2002).

Indeed, it is up to the modeller to specify the strat-
egy set, and there is no reason why this cannot be re-
stricted to plausible rules of thumb. Ongoing research
at ABC (J.M.C. Hutchinson, P.M. Todd, C. Fanselow,
personal communication) considers adaptive car park-
ing heuristics in this context: the best heuristic for de-
ciding whether to accept a parking space now or try
c s of
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r the
irds in the flock have flown up simultaneously. M
lling confirms that this is an efficient strategy exc
hen flock size is small (Proctor et al., 2001), and there

s also empirical evidence of its use (Cresswell et al
000).

Not all social heuristics involve copying, and int
ction may be only indirect. For instance,Thuijsman e
l. (1995)considered simple rules responding to ne
olume that bees might use to choose between alt
ive patches of flowers. Although these rules see
aladaptive when applied to an individual forag

n isolation (they cause matching), they made g
ense in an environment where there are compe
or the nectar (they then produce an ideal free distr
ion). With hummingbirds sometimes an individual
flower to itself, and sometimes competitors also

Gill, 1988). If a flower’s nectar supply declines b
ause of competition, the bird should decrease inte
loser to the destination depends on the pattern
ars in the car park, which depend on the heuri
sed by other drivers. We set up computer tournam
etween different candidate heuristics, each of w
ould vary in at least one parameter. The car park
ut was kept constant but the less successful heur
ere less likely to be reused by drivers. The frequen
f competing strategies and of their parameter va
ere then left to “evolve”. The victorious heuristic
uired that two conditions be satisfied for a spac
e accepted: one was that it lay within a fixed dista
f the destination, and the other that the local den
f spaces was low. Leaving aside the question of
epresentative our single car park is of the diversit
eal parking situations, our model is unrealistic in h
eterministically the rule frequencies adjust depen
n average performance in the preceding generatio
eality, each person is likely to show lots of noise in
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strategies they use, which can considerably affect what
strategies are favoured in response (McNamara et al.,
2004). So, there is a long chain of uncertain reasoning
involved in a fully game-theoretic analysis. An alter-
native approach would be simply to calculate which
heuristics perform well in response to patterns of spaces
observed on real streets.

Computer tournaments between simple strategies
were also the original method of analysis of the Iter-
ated Prisoner’s Dilemma game (Axelrod and Hamilton,
1981) in which one of the simplest strategies, Tit for
Tat, was the victor. Tit for Tat has stood up remark-
ably well to new challengers, although recently a more
complex rule has been claimed as superior (Hauert and
Stenull, 2002). More important is that this paradigm has
been influential in getting both economists and biolo-
gists thinking in terms of simple algorithmic response
strategies, with sometimes deliberately limited cogni-
tive abilities (Hoffmann, 2000). Unfortunately, existing
claims of animals using Tit for Tat are unconvincing
(Hammerstein, 2003); part of the problem is that real
biological situations are much more complex than the
Iterated Prisoner’s Dilemma game, so that other strate-
gies become available.

Another aspect of social rationality that ABC has
started to investigate is the mechanisms by which in-
dividuals in a group amalgamate their separate knowl-
edge or judgements to make a group decision (Reimer
and Katsikopoulos, 2004). Maybe there is something to
be learnt in this regard from research on group decision-
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voting methods restrict the sorts of heuristics that an
ant colony can use to choose between nest sites. They
considered such models as satisficing, Elimination by
Aspects and lexicographic strategies, but produced firm
evidence both that ants consistently select the best site
and that even the least important cue could affect a
decision. Thus, a weighted-additive model fitted best.
They argued that such a mechanism may be inevitable
in a parallel-processing superorganism in which the
method of decision is roughly counting votes of indi-
vidual workers weighted by their individual enthusiasm
for their single site. This mechanism makes it infeasible
that the colony could consider attributes successively in
turn even if a non-compensatory environment structure
would favour this.

10. How biologists study rules of thumb

Having now explained the principles behind the
ABC programme, we concentrate again on biological
research on rules of thumb. In this section we contrast
the techniques of the two disciplines.

Many behavioural ecologists are interested mostly
in the ultimate function of behaviour. To them rules
of thumb may mostly seem important in providing a
possible excuse if their optimality models fit only ap-
proximately. Then there are rarer behavioural biolo-
gists who, very much like ABC, do have an interest in
the adaptation of rules of thumb. They may use simi-
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aking in social insects. For instance,Seeley (2003
onsiders how honeybees use simple rules to com
he quality of different potential nest sites even tho
o individual need have visited more than one
couts that have discovered an inferior nest site
ertise it (dance) less vigorously and for less time.
ruits are consequently more likely to visit the be
ites, and dancing for inferior sites dies out.Seeley an
isscher (2003, 2004)discuss why it is adaptive th

he colony moves when a critical-sized quorum (10
ndividuals) agree on one site, rather than waiting

consensus or majority. This sounds like satisfi
n that the colony takes the first option exceedin
hreshold, but it is not a case of ignoring all but
rst acceptable site, because scouts may already
isited other sites and competed to recruit nestma

A similar quorum rule has evolved in ants (Pratt e
l., 2002).Franks et al. (2003)argued that this and oth
ar simulation techniques to compare the performa
f different rules of thumb. For instance,Houston e
l. (1982)considered how a forager should decide

ween two resources providing food items stocha
ally each with an unknown reward rate (a “two-arm
andit”). Candidate rules of thumb included “Win-st
ose-shift”, probability matching, and sampling ea
esource equally until one had yieldeddmore successe
han the other. Which was the best rule depende
he environment, although the first two examples w
enerally the worst.

The simulation approach has the limitation that th
s no guarantee that there are not simpler or better r
ne test is to give a real animal exactly the same ta

he simulated agents and compare performance:
aum and Grant (2001)found that real hummingbird
id better in two of their three model environments t
id any of the simulated simple rules of movement.
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other check on the biological relevance of postulated
rules of thumb is to compare behaviour of the simulated
agents with that of real animals. Some papers use the
same simulation model to predict both behaviour and
performance (e.g.Wajnberg et al., 2000). In this exam-
ple, the parameters of the patch-leaving rule were first
estimated from experimental data, but then varied to ex-
amine which mattered for performance. Other papers
use simulation only to check whether postulated deci-
sion rules can explain observed emergent behaviours
(e.g.Ydenberg, 1982; Keasar et al., 2002; de Vries and
Biesmeijer, 2002); ultimate function is not the main
focus.

However, most biological research on rules of
thumb has not involved computing but an experimen-
tal, bottom-up approach that starts by observing the
animals and is usually not driven by anything but the
most intuitive theoretical expectations of what rules
would work well. The interest is in details of mech-
anism, maybe aiming down to the levels of neurones
and molecules. ABC has emphatically not taken this ap-
proach, but much of human and animal psychology has
this emphasis on discovering the details of the mecha-
nism. Although research in this tradition usually starts
by investigating the response to single cues, sometimes
attention may later shift to examining how cues are in-
tegrated. With this approach, rules of thumb are not the
testable hypotheses with which one starts an investiga-
tion but rather they emerge at the end of the process as
broad summary descriptions of the more detailed pat-
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a smallish and moving object; they then approached
closely downwind to check its scent, jumped on it, and
then could use tactile or taste cues to further check its
suitability. Although the right scent was necessary as
a second stage, and although they could retrieve lost
prey items by scent alone, without the initial move-
ment stimulus a correctly smelling dead bee attracted
no interest. Tinbergen was also surprised that, although
homing wasps showed great sophistication in recog-
nising landmarks visually, hunting wasps were easily
fooled into smelling a moving object that was visually
very unlike their bee prey.

Some of this type of behavioural research has de-
veloped beyond the behaviour to examine the neuro-
logical processes responsible. This can sometimes be
uniquely illuminating with regards to rules of thumb.
For instance,Römer and Krusch (2000)have discov-
ered a simple negative feedback loop in the ear of
bushcrickets, which adjusts the sensitivity of the ear
according to the loudness of the signal. The conse-
quence is that the female’s brain is totally unaware
of all but the loudest male cricket in the vicinity (or
possibly two, if a different male is loudest in each
ear). The consequence behaviourally is a rule of thumb
for mate choice of simply heading towards the male
that appears loudest (usually the closest). Whether this
is adaptive has not been considered. Unfortunately,
results at this almost physiological level of analysis
are still largely restricted to perception, learning and
memory (e.g.Menzel et al., 1993; Shettleworth, 1998;
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erns already discovered. The adaptive advantag
he observed mechanism over others may only ap
s speculation in the discussion.

Some of the most elegant examples of this bott
p approach come from the classic work ofTinbergen
1958), although for him ultimate function was ce
ainly not always a peripheral issue. For instance
as interested in how a digger waspPhilanthus triag-
lum finds its way back to its burrow. By building
ircle of fir cones around the burrow and then m
ng them while it was away, he showed that wasps
uch objects as landmarks. He went on to examine
orts of objects are used as landmarks, at what
hey are learnt, and how close landmarks interact
ore distant ones. He also became interested in

he wasps found their prey. Using a variety of caref
resented models hanging from a thread he sho

hat what first alerted the wasps was the appearan
enzel and Giurfa, 2001), not yet revealing muc
bout cue integration or decision-making.

Advances in molecular biology mean that ot
on-neural mechanisms of cue integration are als
oming accessible. For instance, recent work ha
ablished that there are three independent path
nfluencing when anArabidopsisplant flowers (on
esponds to photoperiod, one to chilling, and
s endogenous), and how these pathways intera
omething molecular biologists now hope to ans
Simpson et al., 1999).

In summary, although some biologists study ru
f thumb in the same way that ABC studies heuris
ost of the results derive from experiment that
ot been driven by theory. Such work often throws
urprises in the particulars, which one hopes theory
xplain. ABC relies on other schools of psycholo
or instance the heuristics-and-biases school (Gilovich
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et al., 2002), to provide some of the empirical surprises
that its theories explain.

11. How animals combine information from
multiple cues

Much of ABC’s research has been on the integra-
tion of different cues, so a disappointment about the
biological research is that most papers examine a sin-
gle cue. Often all other cues are held constant. When
the interactions between cues have been investigated,
and lots of such studies exist, most often the results are
not related to those of other such studies. Recently a
few papers have reviewed how females integrate cues
to male quality (Jennions and Petrie, 1997; Candolin,
2003; Fawcett, 2003, Chapter 3) but results from many
other domains of decision-making could be connected
(e.g.Partan and Marler, 1999). This is certainly some-
where that ABC can contribute to behavioural biology,
by providing testable theory of what statistical struc-
tures of cues favour what methods of cue integration.

This is not the place for a thorough review of the
empirical results, but a general conclusion is the diver-
sity of methods used to combine cues. For instance,
Shettleworth (1998, Chapter 7)reviews how animals
combine cues used in navigation (local and distant
landmarks, path integration, sun compass, etc.). Ex-
periments indicate clear cases both of a sequential ap-
plication of cues and of averaging the locations pointed
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are seen to be inspected at each stage before others are
available, or where different cues predict breaking off
the process at different stages. For instance, female sage
grouse first assess males in a lek on the basis of their
songs, and then visit only those passing this test for a
closer visual inspection of display rate (Gibson, 1996).
Such a “layered” process of sexual selection seems ex-
tremely widespread (Bonduriansky, 2003) and clear se-
quences of cue inspection are similarly well known in
navigation and food choice. Note, however, that a se-
quential process need not necessarily imply a fixed cue
order, nor that cues observed at one stage are ignored in
decisions at later stages. Thus, either visual or olfactory
cues in isolation are sufficient to attract hawkmoths to
a flower, but both cues must be present to stimulate
feeding (Raguso and Willis, 2002).

Even where the sequential aspect is not apparent,
a clear ranking of importance of cues is at least com-
patible with a decision rule like Take The Best. For
instance, honeybees trained to identify model flowers
decide on the basis of colour only if the odours of
two alternatives match, and on the basis of shape only
if colour and odour match (Gould and Gould, 1988,
Chapter 8). Gould and Gould explained this order on
the basis of validity: odour was the most reliable cue to
the species of flower, colour varied more from flower
to flower, and shape varied depending on the angle of
approach. They also are clear that by the time the bee
gets close enough to sense flower odour, all three cues
are available.
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hat average, if there is too much conflict between c
hey tend to fall back on large-scale spatial cues, w
n nature are the most constant and reliable. An inte
ng comparison is the rules for dealing with conflict
emporal cues (Fairhurst et al., 2003).

We now focus in turn on sequential and n
equential cue assessment, finding in each cas
mpirical results from biology might prompt new
ections of research for ABC.

1.1. Sequential cue assessment

Most studies measure only how cue values and
vailability of cues affect the outcome of choice, not
rocess, so we cannot readily tell whether assess
f cues is sequential. The exception is if there is an
ervable behavioural sequence in which different
However, other examples suggest that AB
equential cue assessment models may need
xtended. One complication is that most cues
uantitative rather than the binary cues on which T
he Best operates. A threshold can convert quantit

nto binary, which might be applicable for categori
ion into species or sex (e.g.Vicario et al., 2001), but
ost tasks studied involve comparison of a continu

riterion such as quality. With quantitative charac
he distinction between compensatory and n
ompensatory becomes muddied. If two individu
iffer considerably on one cue, there may be no us

nformation to be gained by looking at further cu
ut if they differ only a little, it may be useful to co
ider further cues without necessarily discarding
nformation from the first cue. With quantitative cu
e may find that which cues predict choices depe
n which exhibit the most variation in that habitat a
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that year (e.g.Lifjeld and Slagsvold, 1988). We might
observe such a pattern even if the same method of cue
integration were used in the different environments, but
it would not be surprising if choosers learnt not to trou-
ble to examine the less informative cues in that envi-
ronment. Another complication with quantitative traits
is that intermediate cue values may be more attractive
than either extreme (e.g.Calkins and Burley, 2003).

Whereas for search in memory or search on a com-
puter screen examining cues in order of decreasing va-
lidity may make good sense, in the biological examples
other factors seem more important. In mate choice the
more reliable cues to quality tend to be examined last.
In locating resources the cue giving the most exact loca-
tion tends to be examined last. One reason is likely to be
the cost of sampling each cue in terms of risk, energetic
expenditure or time. For instance, mock fighting an-
other male may be the most reliable cue to which of you
would win a real fight, but mock fighting has consid-
erable dangers of damage, and consequently is not at-
tempted unless other safer displays have failed to make
the difference in quality apparent (Wells, 1988; Enquist
et al., 1990). Morphological cues may be judged at a
glance whereas behavioural traits may require time to
assess.Fawcett and Johnstone (2003)consider the op-
timal order to assess cues differing in informativeness
and cost. The other related reason for less valid cues to
be assessed earlier is that some cues must necessarily
appear before others. For instance, a deer stag cannot
help but see the size of its rival before it starts fight-
i as a
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rather than that the cue informativeness of pre-existing
signals has favoured an order of inspection.

11.2. Non-sequential cue assessment

There are striking examples of an additive effect
of different cues. By manipulating realistic computer
animations of sticklebacksGasterosteus aculeatus,
Künzler and Bakker (2001)showed that the propor-
tion of choices for one image over another was linearly
related to the number of cues in which it was supe-
rior (cf. tallying). Similarly,Basolo and Trainor (2002)
showed in the swordtail fishXiphophorus hellerithat
the time for a female to respond was explicable as the
sum of the effects of each component of the sword
(cf. weighted-additive). However,Hankinson and
Morris (2003)pointed out an alternative explanation
for such additive results, which depend on averaging
the responses of many fish. An additive pattern need
not be due to an additive interaction of the cues in all
individuals, but to each individual responding to dif-
ferent single cues—each extra cue persuades another
subset of the population. We do know of cases of dif-
ferent individuals in the same population attending to
different cues (e.g.Hill et al., 1999). The method of
processing may differ between individuals too; older
female garter snakes demand males that are good on
two cues, whereas either cue alone satisfies younger
females (Shine et al., 2003).

More complex interactions between cues are also
o
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ue to size even before the animals get close enou
udge size visually.

Paradoxically, in these situations a more n
ompensatory environment may lead to examin
ues in increasing order of validity (the reverse of T
he Best), at least in cases where the quantitativ

ure of cues means that cue values are unlikely to tie
he chooser gets progressively closer or more wi
o take risks, more cues become available; it shou
dapted to read those new cues whose validities
eigh those of earlier cues, but less valid new c
re unlikely to provide useful additional informati
nd so might be ignored. An interesting question
hat extent the orders in which cues are examine
daptations. With sexual selection, it could often be
articular traits evolve as signals because of the sta

he assessment process in which they can be exam
 ,

bserved. For instance, in the guppyPoecilia reticulata
olour affected choice when both animations show
ow display rate, but not when they both showed a h
ate; conversely display rates mattered when both
ations displayed colour, but not an absence of co

Kodric-Brown and Nicoletto, 2001). Another comple
attern is suggested in the work of bothZuk et al. (1992
ndMarchetti (1998); female choice was unaffected
anipulations of single male traits that earlier ob

ational studies had suggested females were utili
ne interpretation is that if one signal disagrees wit

he other signals, it is ignored, which might be adap
f accidental damage to single morphological cha
ers is not indicative of quality. Some traits that
an measure independently may well be treated b
nimal as composite traits, implying that complex

egration of cues may happen at an almost perce
evel (Rowe, 1999; Calkins and Burley, 2003; Ro
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and Skelhorn, 2004). One cue may alert the receiver to
the presence of another (e.g.Hebets, 2005), or one cue
may act as an amplifier for another (Hasson, 1991; for
instance, contrasting plumage coloration makes it eas-
ier for the receiver to judge display movements). The
usual assumption is that amplifiers rely on constraints
in the way perception works, but such multiplicative
cue interactions arise through other mechanisms also
(Patricelli et al., 2003) and so it might be an adapta-
tion to some particular environment structures. A mul-
tiplicative interaction favours two traits both being well
developed over either one in isolation. Perhaps this is
ecologically rational in negatively correlated environ-
ments (cf.Johnson et al.’s (1989)finding of the benefits
of including interaction terms in choice models in such
environments).

12. Breaking down disciplinary boundaries

In the preceeding section we showed how empir-
ical results on rules of thumb and ABC’s theoretical
approach could mutually illuminate each other. This
short section examines further ways to develop the in-
teraction.

ABC has already published research on heuristics
used by animals. For instance,Davis et al. (1999)sim-
ulated various rules that a parent bird might use to al-
locate food amongst its chicks (feed them in turn, or
feed the largest, or hungriest, etc.). Other ABC papers
h ich
r ,
1 ka,
2 the
b ap-
p

ry
b l on
t C is
c atch-
l
O od-
e ter-
n like
w dif-
f e to
t rg
e list

species, individual humans can rapidly change the rule
according to the environment structure encountered.

Equally valid a research strategy would be to move
in the opposite direction, testing whether animals use
the heuristics that ABC has proposed that humans
use. Demonstrating the parallel evolution of human
heuristics in other lineages facing similar environmen-
tal structures would provide more stringent tests of their
status as adaptations. Studying humans has some ad-
vantages, such as the possibility to use introspection
to formulate plausible hypotheses about our heuristics,
but animals provide many other advantages. In most
non-human animals it is clearer what is their natural
habitat and it is possible still to study the animal’s
behaviour and its consequences in that environment.
Comparative studies can test whether the rules of thumb
used by related species have adjusted to their differing
environments. Analysing the structure of the environ-
ment is usually easier than with humans because most
species are more specialist. Shorter life cycles make
it is easier to relate the immediate consequences of a
behaviour to fitness. Practical considerations also al-
low far more complete manipulations of an animal’s
environment than in humans. Moreover, as Tinbergen
found, it is often the case in animals that quite crude
tricks suffice, itself perhaps a reflection of animals’
greater reliance on simpler rules of thumb.

Of course calls for better communication between
biologists and psychologists are not original, and be-
havioural ecology has always had some contacts with
a 1;
F 04
O ga-
t “bi-
a chool
( al.,
2 nvi-
r can
b es as
p ,
1

1

n be
a ns,
b rch
ave dealt with rules of thumb for mate choice, wh
elate to both animals and humans (Todd and Miller
999; Sim̃ao and Todd, 2002; Hutchinson and Halup
004). The resulting papers fitted comfortably into
iological literature, emphasising the similarities in
roaches of the two schools.

Another way to break down the interdisciplina
arriers is to test theory developed in one schoo

he organisms (human or animal) of the other. AB
urrently testing whether humans use the same p
eaving rules known from animals (Wilke et al., 2004).
ne experimental context is a computer game m
lled on a foraging task, but another consists of in
al search in memory for solutions to a Scrabble-
ord puzzle. It is known that different species use

erent patch-leaving rules, presumably in respons
heir environments (van Alphen et al., 2003; Wajnbe
t al., 2003), but we will test whether, as a genera
nimal psychology (e.g.Kamil and Sargent, 198
antino and Abarca, 1985; Rowe and Skelhorn, 20).
ne link of some relevance to ABC is the investi

ion of animal models that duplicate the human
ses” emphasised by the heuristics-and-biases s
e.g.Fantino, 1998; Shafir et al., 2002; Bateson et
003). If these findings are related to the natural e
onments of these animals (not always done), this
e an avenue to test explanations of these bias
roducts of adaptive heuristics (e.g.Arkes and Ayton
999; Schuck-Paim et al., 2004).

3. Conclusions

ABC has demonstrated that simple heuristics ca
surprisingly effective way of making many decisio
oth in terms of frugality and performance. Resea
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has also started to show that humans really use these
simple heuristics in environments where they are eco-
logically rational. It lies ahead to discover how much of
human cognition can be usefully understood in terms of
ABC’s algorithmic approach. Within psychology there
is a wide range of opinion about the likely answer and
thus about the importance of ABC’s work. However,
there is increasing interest from economists, who re-
alise that their unboundedly rational optimality mod-
els often provide an inadequate prediction of human
decisions.

How might ABC gain from a closer relationship
with behavioural biology? Certainly biology consid-
erably broadens the range of examples of heuristics,
some of which will turn out to be shared between
animals and humans. Some make particularly strong
examples because they can be anchored in proven neu-
rological mechanisms or because their adaptive value
is less ambiguous than with humans. Animal examples
may illuminate characteristics of natural environments
that are less important to modern humans, but to
which our cognitive mechanisms are still adapted: an
example is our suggestion that cue orders may have as
much to do with costs and accessibility of each cue as
with validity. We have also discussed how the tools of
optimality modelling might be reapplied to the study of
heuristics.

What might biology gain from a broader knowledge
of ABC’s work? Rules of thumb are already part of
behavioural biology’s vocabulary. And biologists al-
r can-
d ver,
a d of
c lated
c ffer-
e just
a on
s se-
f urs
i be-
t with
c de-
v ork
e ion
w n-
m ea
t plex
m sim-

plicity of animal nervous systems (but seeBookstaber
and Langsam, 1985; Real, 1992; Stephens and
Anderson, 2001; Stephens, 2002). The shared assump-
tion that performance is what matters should facilitate
communication between biologists and ABC.

One of the possible derivations of the phrase “rule of
thumb” is from craftsmen using the size of their thumb
as a measure instead of a ruler (Brewer, 1996). To finish
with a pleasing parallel between humans and animals,
consider this example. The sticky part of a spider’s web
is a spiral thread with each whorl evenly spaced from
its predecessor, as one expects of a well-designed net.
Just like the craftsman, the spider uses a part of its own
body as a calliper. To demonstrate this,Vollrath (1987)
cut off the spider’s legs on one side; the legs regrew at
the next moult, but smaller than before, and the spacing
of the spiral was then proportionately closer.
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