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Three into two doesn’t go: two-dimensional
models of bird eggs, snail shells and plant roots
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Three published two-dimensional analyses of three-dimensional structures are reinvestigated.
(1) In their 1997 paper, Barta & Székely sought shapes of bird eggs that maximized the size
of eggs that packed under a circular brood patch. Inappropriately they measured egg size
by cross-sectional area; maximizing volume implies different optima. Also their genetic
algorithm mislocated their optima, probably because of too much mutation. (2) In this
journal in 1985, Heath considered a section of an idealized snail shell; altering the overlap
of adjacent whorls alters the ratio of shell material to volume enclosed. Heath located an
overlap that minimized perimeter/area of the cross-section, which is different from minimizing
surface-area/volume. I derive the surface area of a logarithmic helicospiral; some formulae
used previously are slightly incorrect. Heath’s alteration of overlap changed shell volume
and aperture area; a more meaningful reanalysis keeps these characters constant. (3) In 1987,
Fitter used a two-dimensional model of plant roots to show that topology, growth rate, and
nutrient diffusion rate affect exploitation efficiency (area of nutrient depletion zone/volume
of root). Recalculation and reanalysis show that only part of the effect of topology depends
on overlap of depletion zones. I compare Fitter’s model to coplanar root systems with three-
dimensional depletion zones and then to fully three-dimensional branching. Finally I discuss
further examples in which two-dimensional models could mislead.

 2000 The Linnean Society of London

ADDITIONAL KEY WORDS:—branch – egg shape – Gastropoda – mollusc – root
architecture – spatial model – spiral – theoretical morphology – oology – optimality model.

CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . 162
Pappus’ theorem . . . . . . . . . . . . . . . . . . . . 162

Bird-egg shape . . . . . . . . . . . . . . . . . . . . . . 164
The four-egg case . . . . . . . . . . . . . . . . . . . 165
The two-egg case . . . . . . . . . . . . . . . . . . . 166
Discussion . . . . . . . . . . . . . . . . . . . . . . 166
A digression on the performance of Barta and Székely’s genetic algorithm . . 167
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INTRODUCTION

Considering that we live in a three-dimensional world, I am surprised by how
much easier it is to think in two dimensions than in three. This conceptual
simplification is no doubt one reason why theoreticians often try to reduce a three-
dimensional problem to two dimensions, other reasons being that it is easier to
sketch diagrams than build solid models, and that computations run faster. Those
structures which exhibit rotational symmetry about an axis particularly invite this
approach, since considering just a section down the axis then involves no loss of
information about the complete structure.

This paper’s aim is to highlight that, whilst such a dimensional reduction can
often be useful as a tool for thought, it need not be a valid short cut when the
analysis aims to be quantitative. To demonstrate the reasons why, I consider in
detail three published cases where the two-dimensional analyses were quantitatively
inappropriate for conclusions about the three-dimensional structures. The first two
cases concern the shape of bird eggs designed to pack optimally and the shape of
snail shells that minimize the requirements for shell material; both these analyses
are based on axial sections. A third case concerns a model of plant roots where the
inappropriate two-dimensional analysis was not of a section but of a three-dimensional
branching structure that had been considered squashed flat. The aim here was to
relate the pattern of branching to efficiency in absorbing nutrients from the soil. In
each case I recalculate the results when allowing for the three-dimensional structure
and compare them with the published results. The three cases are analysed and
discussed in three separate sections, and in the General Discussion I mention some
other examples to emphasize that the mismatch of results from two-dimensional
and three-dimensional models is a widespread phenomenon.

Pappus’ theorem

The bird-egg and snail-shell examples require the use of Pappus’ theorem, which
allows calculation of volume and surface area of a solid of revolution from its cross-
section. Imagine a small square that will be rotated about a coplanar axis, thus
tracing out a ring-shaped solid of revolution (Fig. 1). Pappus’ theorem states:
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Figure 1. Imagine a solid of revolution generated by rotating the crescent-shaped cross-section about
the axis. Its volume can be approximated by dividing the cross-section into squares and generating
solids of revolution from each. Squares of the same size but a different distance from the axis of
revolution generate different volumes.

Volume of the ring=area of the square×distance traversed by centre of square
=area of the square×distance of centre of square from

axis×2p.

A cross-section of more irregular outline can be approximated as made of a number
of small squares each of the same size (Fig. 1). The important point is that the
volume generated by different squares is not the same. Squares nearer the axis
contribute less to the total volume of the solid of revolution than those farther away.
Thus the cross-sectional area of a solid of revolution is not enough information to
calculate its volume. We also need to know the distance of the centre of area to the
axis, which will depend partly on the cross-section’s shape and orientation. For
instance, rotation of an ellipse about its minor axis generates a larger volume than
rotation about its major axis.

To calculate the volume generated by more irregular shapes than a square, again
consider the shape divided into small squares, and sum the volumes of the ring-
shaped volumes generated by each.

Total volume≈R(area of square×distance to axis of square’s centre×2p).
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It is also true that

Total volume=total area×distance to axis of centre of area of whole shape×2p.

From comparison of these two equations it can be seen that the centre of area of a
figure is defined as a weighted average of the centres of all constituent parts of the
figure, with the weighting equal to the area of each part.

There is another version of Pappus’ theorem that enables calculation of the
surface area of a solid of revolution from a cross-section coplanar with the axis. If
we approximate the outline of the cross-section by a series of short straight lines:

Surface area≈R(length of straight line×distance to axis of straight line’s
centre×2p).

Also, similarly to above,

Surface area=total perimeter×distance to axis of centre of perimeter×2p,

where the centre of the perimeter is the weighted average of the centre of component
parts of the outline, each weighted by the part’s length.

BIRD-EGG SHAPE

Barta & Székely (1997) recently published a stimulating paper on the optimal
shape of bird eggs. What they optimized was the efficiency with which a clutch of
eggs (all of the same shape and size) packed into a circular area. The argument was
that the higher this efficiency, the larger the eggs that could pack under the mother’s
brood patch. Barta & Székely showed that the optimal egg shape depended on the
number of eggs in the clutch.

An assumption of their study was that the eggs sat so that their long axes were
all coplanar, thus simplifying the problem from three to two dimensions. This
simplification is unrealistic in that: (i) in the nests of many species the inside forms
a cup; (ii) even for eggs lying on a flat surface, an orientation parallel to that plane
is not exactly the way many egg shapes settle and nor will it optimize packing
(Andersson, 1978); (iii) eggs can potentially overlie each other at their pointed ends
or even form overlying layers. Barta & Székely were aware of these limitations of
their model, but they had to assume coplanar axes in order for their computations
to run in a practicable time (Barta, pers. comm.). I discuss here a different limitation
of their two-dimensional perspective which can be avoided at no computational
cost.

Barta & Székely measured efficiency of packing by looking down on the nest and
calculating the area of the eggs divided by the area of the circle that circumscribed
the clutch. This is a measure of the size of the eggs than can fit within a circular
brood patch of unit area. But it is strange to measure egg size by cross-sectional
area. The more appropriate measure of egg size is volume, as this is directly
proportional to the resources available to the embryo. Because of Pappus’ theorem,
maximizing cross-sectional area will not normally maximize volume.
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Figure 2. (A)–(E) concern the case of four eggs packing symmetrically into a circular nest with their
axes coplanar. (A) The shape illustrated by Barta & Székely (1997), calculated from the median
parameter values of their genetic algorithms (GAs). (B) The shape that their GA should have
found—maximizing cross-sectional area, subject to certain limits on parameter values, and with the
periphery described by only 22 points. (C) Area maximized, parameters unconstrained. (D) Volume
maximized, parameters unconstrained. (E) Volume maximized, length along the axis constrained to
be not shorter than breadth. (F)–(H) concern the two-egg case. (F) Output of the Barta & Székely GA
that maximized area; the two eggs packed 5° off antiparallel. (G) Area maximized, parameters
unconstrained. (H) Volume maximized, parameters unconstrained. Parameter values, given as a vector
[c0, c1, c2, c3], were: (A) [0.865, 0.272, 0.014, 0.005]; (B) [1, 0.659, −0.091, 0.020]; (C) [1.189, 0.725,
−0.110,−0.288]; (D) [1.469, 0.700,−0.184,−0.610]; (E) [0.885, 0.508,−0.037, 0.131]; (F) [0.544,
0.056, −0.100, −0.084]; (G) [0.613, 0, −0.139, 0]; (H) [0.625, 0, −0.103, 0].

The four-egg case

Consider a clutch of four pointed eggs that pack together symmetrically in the
way observed in many wader nests (Fig. 2A). Suppose that the shape illustrated does
maximize the cross-sectional area of eggs that fit into a unit circle (the shape is the
one that Barta & Székely calculated for the four-egg case). If eggs were instead to
maximize volume, it would be better to swell the outline of the egg around region
v in the figure, even at the expense of losing slightly more cross-sectional area at u.
This is because region v is farther from the axis of rotation than u and so the same
cross-sectional area contributes more to volume.

Let us now see how important this effect is quantitatively. Barta & Székely allowed
eggs to have the range of shapes whose x-y co-ordinates are specified by the following
equation,
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y=J1−x2(c0+c1x+c2x
2+c3x

3),

where they kept c0, c1, c2 and c3 within the arbitrary limits 0Ζ(c0, c1)Ζ1 and
−0.1Ζ(c2,c3)Ζ0.1. Another constraint was that no region of the outline could be
concave. Barta & Székely had extra parameters that determined the orientation of
each egg relative to its neighbours, and to solve this multivariate optimization
problem they used a genetic algorithm (Goldberg, 1989). For simplicity, I instead
constrained the eggs to pack symmetrically with their narrower ends towards the
centre, which meant that I could search for the global optimum simply with a
systematic search. As a test of my method I initially attempted to replicate Barta &
Székely’s results, and so searched for the shape that minimized cross-sectional area.

It transpired that the shapes found by Barta & Székely’s genetic algorithm were
far from my optimum both in shape and efficiency. Barta & Székely’s maximum
efficiency (cross-sectional area of four eggs in a circle of unit area) was 0.77, whereas
for exactly the same problem I found a more wedge-shaped egg with an efficiency
of 0.91 (Fig. 2B). Moreover this shape is up against their arbitrary constraint that
c0Ζ1. The shape maximizing area is rather different if the parameters are allowed
to take any value (Fig. 2C).

I compared this with the shape maximizing the volume of eggs that would fit in
the unit circle (Fig. 2D). Not surprisingly the latter is also wedge shaped, but it is
noticeably different in the way predicted above—the fit is less good at the narrower
end near the axis. Still, the maximum-area eggs achieved 96.5% of the volume of
the maximum-volume eggs.

The optimal eggs that I found are wider than long, which would probably pose
a bird insuperable problems to manufacture. Accordingly I also found the optima
when width was constrained to be no greater than length (Fig. 2E). With this extra
constraint the shape maximizing area is almost identical with the shape maximizing
volume.

The two-egg case

I also analysed optimal shape when there are only two identical eggs in a circular
nest. Figure 2F shows Barta & Székely’s solution. For this case I could prove
analytically that one globally optimal arrangement must have the axes of the eggs
lying precisely antiparallel to each other and the outlines touching in the centre of
the nest. By systematic searching of parameter space I then discovered that op-
timizations of both area and volume resulted in exactly symmetrical eggs (i.e. c1=
c3=0). The shape maximizing area (Fig. 2G) is only a little different from that
maximizing volume (Fig. 2H), and the volume of the former is 99.5% of the
maximum volume.

Discussion

Eggs that maximize volume will tend to stick up farther above the substrate than
those that maximize area, and this may mean that a brood patch may not be able
to envelop them so well. The limited ability of the brood patch to stretch and wrap
over such lumpy objects as eggs means that the eggs really should be constrained
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to fit not into a circle but into some other partly deformable three-dimensional
space that is restricted in surface area. However, in reality the shape of the nest
and of the brood patch can evolve to optimize packing as much as can egg shape.

Obviously the problem that Barta & Székely bravely tackled is but a caricature
of the optimization that has occurred through natural selection, but nevertheless
their approach does highlight that packing efficiency will select for particular egg
shapes, and that the optimum depends on clutch size. Unfortunately without
repeating their very time-demanding genetic algorithm, I cannot say for other clutch
sizes whether the optimal shapes are roughly alike when volume rather than cross-
sectional area is maximized. But it seems likely that a shape that maximizes cross-
sectional area will also perform well in maximizing volume, so their conceptual
error need not make much quantitative difference.

A digression on the performance of Barta & Székely’s genetic algorithm

The genetic algorithm (GA) is a computational optimization technique that mirrors
evolutionary processes of natural selection (Goldberg, 1989). The parameter values
are typically encoded as binary digits along a ‘chromosome’, with the values able
to differ between individuals in a population. The best individuals in a population
are selected to breed the next generation, and both mutation and recombination
continually provide variation.

I was surprised that Barta & Székely’s GA did not get very close to finding the
optimum shape in the four-egg case, only achieving 84% of the maximum efficiency.
Perhaps more surprising is that in the two-egg case the GA, despite getting quite
close, nevertheless failed to climb to the top of the adaptive landscape (e.g. the
orientation of Barta & Székely’s best solution was 5% off the optimal antiparallel
arrangement—Barta, pers. comm.). Similarly their one-egg optimization did not
quite achieve the clearly optimum solution of a spherical egg.

I suspect that the reason was that Barta & Székely maintained a high mutation
rate (5% for each parameter). Their surviving configurations had thus had to cope
well with maladaptive changes in shape or orientation parameters. A set of parameters
that is robust in this sense need not be close to the parameters that maximize
efficiency when there is no disruption. This is a recognized problem with GAs that
use a conventional binary code. It can be ameliorated by various techniques that
reduce the magnitude of the effect of one-bit point mutations, such as Gray coding
(Caruana & Schaffer, 1988), successive narrowing of the range of values onto which
a binary code maps (Schraudolph & Belew, 1992), or explicitly modelling mutation
and recombination in ways independent of the binary coding (Bäck, 1996). Barta
& Székely did in fact use the latter strategy but they made mutation equally likely
to lead to any point in parameter space, rather than more likely to have a minor
effect (Barta, pers. comm.).

One could argue that it is more realistic to include the possibility of occasional
misorientated or misshapen eggs in a model, as this is what happens in real nests.
In that case the results are likely to depend very much on the error structure
specified. Barta & Székely’s model did not well represent the real sources of
stochasticity, both because large changes in parameter value were made as likely as
small, and because the individual shape parameters were not representative of real
biological processes. Also one major source of biological stochasticity, variation in
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clutch size, was not included. Measuring what stochasticity is realistic would be the
necessary first step before constructing a more sophisticated new generation of
models.

SNAIL SHELLS

Snail shells consist of a tube that steadily expands in cross-section, while coiling
around an axis. There is a long tradition of modelling snail shells as logarithmic
helicospirals to which many species indeed approximate quite closely (McGhee,
1998). The essential property of this geometrical figure is that all dimensions of the
shell increase by the same proportion with each revolution of growth, so that shape
remains constant. A section down the coiling axis reveals the full structure of the
shell (Fig. 3A). The shell in Figure 3A has a circular generating curve, and by
altering just three other parameters a wide variety of shapes can be produced (Raup,
1966). The three parameters represent the rate of expansion each revolution, the
relative distance of the generating curve from the coiling axis, and the translation
rate of the generating curve down the coiling axis.

Heath (1985) investigated whether terrestrial snail shells were designed to minimize
the amount of shell material required to enclose a particular volume of flesh. In
particular he considered the overlap of the generating curve between successive
whorls. By incorporating the preceding whorl as one wall of the aperture, the snail
avoids having to lay down so much new shell material. However, if the overlap is
high, increasing overlap does not achieve much extra reduction in the shell material
required, whereas the preceding whorl bulges far into the new whorl and thus
considerably reduces the volume enclosed (Fig. 3B–E). There is therefore some
optimum overlap.

Heath intended to find the overlap that minimized the amount of shell material
required to enclose a particular volume of flesh. Instead he considered the cross-
section of the tube sectioned down the coiling axis (Fig. 3A) and minimized the
perimeter of new shell divided by the area enclosed. Because of Pappus’ theorem,
minimizing perimeter/area (P/A) is not the same as minimizing surface-area/volume
(SA/Vi). The reason is that for the crescent-shaped cross-section the perimeter and
the area have centres different distances from the coiling axis.

Heath found that real shells showed more overlap than the optimum that
minimized P/A. I first examine whether the agreement is better if we instead
calculate the optimum that minimizes SA/Vi. Then I will explain that the absolute
volume of the shell and the taper of its interior also affect these ratios, and that
optimum overlap differs when these quantities are held constant.

Calculating the volume and surface area of a helicospiral

The equations in the Introduction are for a solid of revolution where there is no
expansion and no translation along the coiling axis. However, Pappus’ theorem may
be extended to calculate the volume of helicospirals (e.g. Raup & Graus, 1972). For
a short segment of the helicospiral,
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Figure 3. (A) An isometric snail shell sectioned down its coiling axis. (B)–(E) show the sections of three
consecutive whorls which grow by a factor of 1/0.7 each revolution and where bc=1. Overlap
(measured by F) increases across the page: (B) F=0.125, maximizing SA/Vi or Vs/Vi if aperture
diameter and per-revolution expansion rate are kept constant; (C) F=0.139, the optimum overlap
predicted by Heath from maximizing P/A; (D) F=0.276, maximizing SA/Vi if volume and aperture
area are kept constant; (E) F=0.624, maximizing SA/Vi if volume and per-revolution expansion rate
are kept constant. (F) Co-ordinate system and variables applied to a small step dt of a helicospiral
trajectory.

dvolume≈area of cross-section×ddistance moved by centre of area of
cross-section.

The cross-section considered here is coplanar with the coiling axis, not perpendicular
to the growth direction of the tube. For a logarithmic spiral
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area of cross-section=a0e
2mt,

where a0 is this area at some arbitrary reference point on the shell and t is the
number of revolutions from that reference point. t is measured in radians and m
measures the proportionate increase in the shell’s linear dimensions with each radian
of growth.

When calculating the distance moved by the centre of area we should consider
length ds (Fig. 3F), which is unaffected by translation down the coiling axis. This is
because a shear transformation leaves volume unchanged (think of pushing over a
stacked pack of cards). If we had instead measured area of a section cut perpendicular
to the direction of growth, we would have had to have incorporated translation
rate. It is a standard result for all two-dimensional curves that

ds2≈(rdt)2+(dr)2.

Here we want r to be ra the distance of the centre of area to the coiling axis, which
at t=0 I call ra0. For a logarithmic spiral ra=ra0e

mt, so the two-dimensional movement
of the centre of area around the axis is

dsa=ra0(1+m2)1/2emtdt.

Thus

d(volume)=area of cross-section×dsa=a0e
2mt×ra0(1+m2)1/2emtdt.

Integrating this from t=−∞ to 0, yields a total volume for the shell of

1
3
a0ra0(1/m2+1)1/2.

For cross-sections of irregular shape a0ra0 must be found by integrating over
component parts of the cross-section.

Calculating surface area is less straightforward, essentially because a shear trans-
formation does affect surface area. Pappus’ theorem works only for surfaces of
revolution in which there is no expansion. Additional text in the appendix explains
the reason and shows how surface area can be calculated for a logarithmic helicospiral.
Raup & Graus (1972) and Stone (1997) overlooked this limitation of Pappus’
theorem, although quantitatively their error is insignificant for realistic parameter
values. In the appendix I also correct some earlier work of my own (Hutchinson,
1990a; see also Rice, 1998), which suffered from a related fallacy.

An alternative approach is not to calculate surface area but to calculate the
volume of shell material under the assumption that the shell is proportionately
thicker in larger whorls. The volume of shell material can be then calculated by an
expression similar to that for volume of the shell contents. For thick shells the
equivalent of a0ra0 must be calculated directly by integrating component areas of
shell thickness. For thin shells whose generating curve is coplanar with the coiling
axis and uniform in thickness, a0≈(shell thickness at t=0)×(the relevant length of
perimeter of cross-section), and ra0≈the centre of this length of perimeter. Thickness
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here is measured in the plane of the cross-section, so will not be uniform measured
perpendicular to the shell surface, but the discrepancy is small for realistic parameter
values.

Results of incorporating Pappus’ theorem

For illustrative purposes I analysed the case of a generating curve with a circular
outline, with linear dimensions increasing each revolution by a factor of between
1.11 and 3.33, and with a translation rate between bc=0 and bc=1 (if the centre
of the generating curve is rc from the coiling axis, its distance from the apex measured
along the coiling axis is bcrc: see Fig. 3A). For the initial analysis I follow Heath in
comparing shells with the same radius of aperture.

Figure 4A shows how the optimal overlap depends on whether we minimize
either perimeter/area (=P/A), or (surface area)/(interior volume) (=SA/Vi), or
(volume of shell material)/(interior volume) if the shell is thin and increasing from
early to late whorls (=Vs/Vi). The translation rate affects only SA/Vi and makes
rather little difference. For all three cases the expansion rate increases our measure
of optimum overlap, but the ordering of the three optima remains the same (Fig.
4B). Heath’s P/A optimum consistently occurs at larger overlaps than the two
optima based on proper three-dimensional analyses, although the difference is slight
(cf. Fig. 3C with 3B). Since Heath observed that real shells had greater overlaps
than his predictions, incorporating Pappus’ theorem seems to make it even less
plausible that overlap optimizes the use of shell material.

Further analysis 1: comparison at constant volume

There are two factors other than overlap that affect SA/Vi, but that have not yet
been properly taken into account. One is that because SA/Vi is not dimensionless it
will decrease with absolute size. In the above analysis, when overlap is increased the
volume of the shell decreases. It would seem more meaningful to compare SA/Vi at a
constant shell volume by allowing the shell to grow further. This is equivalent to making
the measure dimensionless by multiplying SA/Vi by volume1/3. Since shell thickness is
proportional to volume1/3 in an isometric shell, this adjusted value is proportional to
the amount of shell material required to make a shell of unit volume a particular
thickness all over. Adjusting Vs/Vi in a similar way is also meaningful because Vs has
so far included an arbitrary constant reflecting shell thickness at the aperture, which
we can also now replace by a constant×volume1/3. Henceforth we will be comparing
shells of the same volume that have the same thickness at the aperture.

When these adjusted values are plotted against overlap, it turns out that for
rapidly expanding shells the more overlap the better (Fig. 4C,D). The reason is that
as overlap increases the outer whorl takes up most of the shell diameter. Rather
than being a thin disk, the shape is then much more rounded and thus requires less
shell to enclose a particular volume. For shells that expand more slowly there is an
optimal overlap, but this is very high (Fig. 3E).

Heath did also attempt to compare shells that enclosed a constant volume.
Unfortunately his two-dimensional perspective led him to believe erroneously that
keeping aperture area constant would achieve this. He kept aperture area constant
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Figure 4. Optimal whorl overlap in a snail shell growing as a logarithmic helicospiral. Each row of
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volume and aperture area constant. Graphs in the left column show the effect of altering overlap on
various measures of the ratio between the amount of shell material used and the volume enclosed. An
arrow indicates where the overlap maximizes these measures. These optima depend on the expansion
rate (the four curves in (C) and (E) correspond to four different values; the expansion rate in (A) is
1/0.7, a typical value for a terrestrial snail). Graphs in the right column show the effect of expansion
rate on the optimal overlap.

F is the proportion of the diameter of the larger whorl that is overlapped by the smaller. All values
for SA/Vi and P/A assume that when F=0 the aperture has unit radius. Values for Vs/Vi should be
multiplied by (shell thickness/Vi

1/3) measured at the aperture; this factor is assumed to be independent
of F. Expansion rate is the proportionate increase in linear dimensions each revolution. In (E) the
curves are labelled with the expansion rate when F=0; expansion rate will increase along each curve
as overlap increases; this increased value is used in (F). I take bc=1 (as in Fig. 3A), except for the
dashed line in (B) corresponding to the SA/Vi curve for the planispiral case bc=0 (the Vs/Vi optima
are unaffected by bc). Since bc≠0, the maximum overlap is constrained by my not allowing the whorl
cross-sections to cross the coiling axis; in (D) and (F) the parts of the curves generated by this constraint
are dotted.
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by adjusting expansion rate and ironically there are other reasons for doing this
that are valid. I explain them in the following section.

Further analysis 2: comparison at constant aperture area and constant volume

When changing the overlap in the above analyses, I have maintained a constant
increase in dimensions each revolution. However, by thinking in three dimensions,
one realizes that when overlap is high, and thus when the aperture is relatively close
to the coiling axis, the length of the one revolution of tube connecting consecutive
cross-sections is relatively shorter than when there is less overlap. Logarithmic
helicospirals are coiled cones, and with increasing overlap, the more rapidly tapering
is this cone. In shells of like volume, a more rapid taper means a larger aperture.
The relative size of the aperture is important for snails because it influences the
access for predators, the rate of dehydration, and the size of the foot, and thus the
strength of adhesion. Therefore there is a strong argument for keeping the relative
size of the aperture (and thus the interior taper of the coiled cone) constant when
we alter overlap, and adjusting the per-revolution rate of expansion accordingly.
The per-revolution rate of expansion seems likely to have less direct importance to
a snail. This is what I have done in Figure 4E & F, again comparing shells of the
same total volume.

An optimum whorl overlap now exists for all but the fastest expansion rates. The
optima are very similar whether the shell is of uniform thickness (SA/Vi) or whether
inner whorls have proportionately thinner shells (Vs/Vi). The translation rate has
very little effect. Shells with relatively larger apertures have larger optimal overlaps
(as measured by F, the proportion of the diameter of the larger whorl occupied by
the smaller).

If we compare shells with the same per-revolution expansion rate, shells that have
optimal overlaps under these new criteria have larger overlaps than Heath found
optimal (under his criteria of minimizing P/A with either per-revolution expansion
rate or aperture area held constant). So my three-dimensional analysis could explain
why Heath observed larger overlaps in real snails than his optimality model predicted.
The overlaps predicted by the last version of the model certainly look the most
realistic (Fig. 3D).

Discussion

I shall not test more carefully whether my analysis accurately predicts overlap in
real shells, because a model realistic enough to give quantitative predictions would
be much more complicated. Real shells do not have circular apertures and shell
thickness is not uniform around the aperture. Also when a new whorl is laid down
the penultimate whorl to which it attaches is covered in a reasonably thick layer of
new shell material. A further complication is that snails typically redistribute shell
material as they grow, thinning the shell walls that have become internalized, and
thickening the walls of the early whorls that remain external (Kohn, Myers &
Meenakshi, 1979; Hutchinson, 1990b). These processes do affect the overlap that
maximizes the average shell thickness attainable with a set volume of shell material.
Thus a much more detailed model is required based on measurements of relative
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thicknesses of different parts of the shell, how much shell material is redistributed
and the cost of redistributing it.

In such a model overlap would not be a particularly meaningful parameter to
alter because snails seem unlikely to alter overlap whilst keeping every other growth
parameter constant. More direct ways in which snails change their shell morphology
are through altering the shape, expansion and site of attachment of the aperture
(Hutchinson, 1989). It is more plausible that each of these parameters could vary
independently of the others, and so it would be more meaningful to ask how altering
these parameters affects the shell thickness attainable with a set volume of shell
material.

Although more complicated, such analyses should certainly make use of the three-
dimensional approach developed in this paper. So I now summarize the ways in
which a three-dimensional perspective changed the analysis. We realized that: (i)
minimizing P/A would not necessarily minimize SA/Vi; (ii) we should compare
shells of the same volume; and (iii) increasing overlap increased the rate of taper of
the shell interior so that we were still not really comparing like with like. On the
other hand, Heath’s two-dimensional perspective gave him the original insight that
there might be an optimum overlap.

PLANT ROOTS

There have been many models in the botanical and palaeontological literature
examining the consequences of different branching patterns in plants. Most branching
patterns and most models of them are fully three-dimensional (a justified exception
being models of ramets spreading horizontally over the ground). Other models
concern conduction rather than exploitation of space and so can be topological
rather than geometrical. However, a paper by Fitter (1987) is one example of where
a two-dimensional model again misrepresents some aspects of a three-dimensional
situation. This misrepresentation is conceptually similar to those identified in the
earlier examples, even though a network of branches does not form a solid of
revolution and may even be asymmetrical.

Fitter was concerned with the effect of a root system’s topology on the exploitation
of dissolved solutes in a uniform soil. Herring-bone arrangements in which all side
roots branch directly from a single axial root have a high topological index (TI),
compared with the low TI of topologies in which every offshoot can itself branch
(in Fig. 5 compare E with B). Fitter constructed a two-dimensional model in which
branching occurred stochastically but was constrained by specified parameters. For
the results that he reported branching angle was kept at 75°, but it was chance
whether this was to the left or right (except that an upwards component in the
direction of growth was disallowed). As the root grew it drained nutrients from a
zone around it, this zone growing with time both because the root reached new
regions and because nutrients continued to diffuse towards the older parts of the
root (Fig. 5B–G). Once a zone was depleted through the proximity of one branch,
it could not be exploited again, so branches that grew too close to others would
lower the efficiency. Exploitation efficiency was measured as the area of the depletion
zone divided by the volume of the root.

Fitter varied the probabilities of branching and showed a positive relationship
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Figure 5. (A) Magnitudes, orders and ages for each link of the same root network (see page 179 for
definitions). (B)–(G) show depletion zones (white) with the root thickness drawn to scale inside them. The
network in (B)–(D) and (G) has a low TI of 0.52; that in (E) and (F) has the maximum TI of 1.0. In (B)–(F)
axial root growth=10 mm/day; in (G) growth=50 mm/day but the representation is at 1/5 the scale,
and hence the roots appear thinner. Diffusion rate is set by the parameter D where D=10−6cm2s−1 in (B)
and (E); D=10−7cm2s−1 in (C), (F) and (G); D=10−8cm2s−1 in (D).

between TI and exploitation efficiency. The slope of this relationship was lower if
the diffusion rate was low, which he explained by the depletion zones around each
branch then being too small to overlap often (Fig. 5D). Similarly if the root grew
fast relative to its branching rate, roots were too far apart for the depletion zones
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to be likely to overlap (Fig. 5G). However, if the root grew slowly and diffusion rate
was fast, Fitter found no effect of topology above a TI of about 0.7.

Except for this last result, these patterns are not particularly surprising, and seem
likely to hold qualitatively whether a model is two- or three-dimensional. However,
Fitter’s model used realistic values of diffusion rates and growth rates, so there is a
temptation to draw quantitative conclusions, and these may be misleading because
his model is two-dimensional. It is obvious that there is more space in three
dimensions and thus less likelihood of depletion zones overlapping, but I wish to
establish here how important this is quantitatively. Therefore I have reconstructed
Fitter’s model but then extended it to three dimensions.

Fitter and others have since constructed fully three-dimensional models of nutrient
depletion around root systems (Fitter et al., 1991; Lynch & Nielsen, 1996), so one
might argue that the earlier two-dimensional model is now not worth detailed
criticism. But the details of these models are different and their output is reported
in a different way, so they do not tell us to what extent the two-dimensional
model was misleading. Therefore the temptation to revert to a two-dimensional
simplification may remain, especially when more difficult tasks are tackled (such as
the optimization of branching rules, or the incorporation of competition with
neighbouring root systems). Also the acceptance of the need for three-dimensional
models by root modellers does not necessarily mean that modellers of other structures
realize the dangers (models of branching in above-ground parts of plants and in
bryozoans were fully three-dimensional before Fitter published his two-dimensional
model—e.g. Niklas & Kerchner, 1984; Cheetham & Hayek, 1983). By identifying
the several different reasons why the two-dimensional simplification gives different
results, I aim to make it apparent that the same differences can apply in other sorts
of models. A further reason to compare two- and three-dimensional models of root
systems in particular is that roots are often studied growing in rhizotrons, which
forces the root system to become almost two-dimensional.

Results from the two-dimensional model

Instructions in Fitter (1987) allow reconstruction of his program. Slight ambiguities
were resolved through personal communication (the first node lies at the ground
surface and cannot branch; t=1 for the most recently grown segment of root).
Unfortunately the values of exploitation efficiency in Fitter (1987) appear to be
erroneous by a factor of 60% or more, so I give a corrected version of his results
in Figure 6A & B. The broad patterns that Fitter observed do hold, but the surprising
result that TIs above a value of 0.7 make no difference when growth rate is slow
and diffusion rate large turns out to be erroneous.

It also transpires that a major reason why exploitation efficiency increases with
TI has nothing to do with the decreasing overlap of depletion zones as TI increases
(although the latter is indeed another reason). To demonstrate this the analysis can
be repeated with the root broken up into isolated segments so that there is no
overlap at all. The exploitation efficiency for these disarticulated roots still increases
strongly with TI. To distinguish this effect from the reduction in exploitation
efficiency due to overlap, I define ‘topological efficiency’ as the exploitation efficiency
of the disarticulated roots, and ‘overlap efficiency’ as the ratio of the exploitation
efficiency of the intact root system to the exploitation efficiency of the disarticulated
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Figure 6. The relationship between exploitation efficiency and TI is plotted for two different values of
root growth rate (A & C, slow; B & D, fast) and three different values of solute diffusion rate. (A) and
(B) are corrected versions of Figure 9 of Fitter (1987), in which exploitation efficiency is measured as
(area of depletion zone)/(root volume) and the network is two-dimensional. In (C) and (D) exploitation
efficiency is measured as the ratio of volumes and the network is fully three-dimensional. In this and
succeeding diagrams the same collection of networks is used for each combination of parameters.
Diffusion rate is set by the parameter D; •⇒D=10−6cm2s−1,Ν⇒D=10−7cm2s−1,Ε⇒D=10−8cm2s−1.
Axial root growth=10 mm/day in (A) and (C), 50 mm/day in (B) and (D).

root system. Overlap efficiency is high if the depletion zones around adjacent roots
overlap little. From these definitions it follows that

exploitation efficiency=topological efficiency×overlap efficiency.

Figure 7 shows log[exploitation efficiency] and log[topological efficiency] for a
range of root systems and for three combinations of growth and diffusion rates. For
each value of TI the difference between these two values is log[overlap efficiency].
Topological efficiency is unaffected by the growth rate of the root, and the effect of
a change in diffusion rate is simply to translate values of log[topological efficiency]
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Figure 7. For three combinations of root growth rate and solute diffusion rate, the relationship of
log[exploitation efficiency] (Χ) and log[topological efficiency] (Β) with TI. (A) slow growth, medium
diffusion; (B) slow growth, fast diffusion; (C) fast growth, medium diffusion. For each network the
difference between these values is log[overlap efficiency]. Exploitation efficiency is measured as (area
of depletion zone)/(root volume) and the network is two-dimensional. (A) axial root growth=10 mm/
day, diffusion rate with D=10−7cm2s−1; (B) growth=10 mm/day, D=10−6cm2s−1; (C) growth=
50 mm/day, D=10−7cm2s−1.

by a constant amount. Figures 7 and 8 show that both topological efficiency and
overlap efficiency increase with TI.

The reason that topological efficiency increases is that Fitter’s model made
width of the depletion zone dependent on the age of that length of root, the
length of a root dependent on its ‘order’ and the thickness dependent on its
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‘magnitude’. Order is 1 for the axial root, 2 for its branches, 3 for the branches
off these branches, etc. (Fig. 5A). If we consider the root divided at each branch
point into separate lengths, magnitude is a technical term defined as follows:
lengths terminating in a meristem have magnitude 1 and all other lengths have
a magnitude equal to the sum of their two daughter branches (Fig. 5A). As TI
changes the distribution of orders and magnitudes changes (cf. Fig. 5B & E).
The many extra peripheral roots in a low TI network have similar root
thicknesses and widths of depletion zones as the roots in a high TI network,
and in any case have relatively little effect on overall efficiency because they
are short. But the magnitudes (and thus thicknesses) of the axial root and its
immediate branches are higher when TI is low, whilst the depletion zone around
them remains the same. This inevitably lowers the topological efficiency and
thus also exploitation efficiency. This effect depends only on the topology of the
root system, not at all on how much depletion zones overlap.

Like topological efficiency, overlap efficiency also increases with increasing TI,
so both factors contribute to the increase in exploitation efficiency. However, when
growth rates are high and diffusion rates are low, overlap efficiency starts to plateau
at medium values of TI (Fig. 8C). Further increases in TI increase the probability
of overlap by only a little.

Three-dimensional depletion zones around two-dimensional networks

As a first step to analyse the effect of converting the two-dimensional model to
three dimensions, I consider identical two-dimensional networks, but allow the
depletion zones to be three-dimensional cylinders around each length of root, rather
than their rectangular cross-sections. Exploitation efficiency is now defined as a ratio
of volumes, which is dimensionally more logical. Fitter et al. (1991) also made this
change in a later three-dimensional model.

Because of this change the topological efficiency also changes. Nevertheless
the relationship of topological efficiency to TI remains very similar, and its
relationship to growth rate is unchanged. But the use of the volume of a
cylindrical depletion zone rather than its cross-sectional area will square the
effect of diffusion rate on topological efficiency (area ∝ diffusion rate1; volume
∝ diffusion rate2). This dominates the change in exploitation efficiency and is
responsible for the most obvious differences between the top and lower halves
of Figure 6 (the lower half applies to the fully three-dimensional network discussed
presently).

Technically more interesting is the change in overlap efficiency when depletion
zones are made three-dimensional. Consider two parallel cylinders that we move
towards each other. Up to now what has mattered is the area of overlap of their
silhouettes (or cross-sections down the axis) as a proportion of their summed cross-
sections. This always overestimates the volume of overlap as a proportion of the
summed volume. The overestimate is higher the more different the radii of the
cylinders. It is this factor that is responsible for the overlap efficiency increasing
when we compare volumes of depletion zones rather than areas (Fig. 8). This
increase in overlap efficiency is by a factor of up to 19% when depletion zones are
wide and TI low.
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Figure 8. For three combinations of root growth rate and solute diffusion rate, the relationship of
overlap efficiency with TI. (A)–(C) as in Figure 7. (Φ) overlap efficiency based on areas for a two-
dimensional network. (Ε) overlap efficiency based on volume for a two-dimensional network. (Χ)
overlap efficiency based on volume for a three-dimensional network. (A) axial root growth=10 mm/
day, diffusion rate with D=10−7cm2s−1; (B) growth=10 mm/day, D=10−6cm2s−1; (C) growth=
50 mm/day, D=10−7cm2s−1. Note that the vertical scale differs between graphs.

Fully three-dimensional networks

I now make the networks fully three-dimensional by allowing the radial angle of
branching to take any value as long as the branch does not then grow upwards.
This model is not unreasonable since the equivalent of phyllotaxy (a regular sequence
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of branching directions) has not been demonstrated in roots ( Jourdan & Rey, 1997).
To facilitate the comparison of the two- and three-dimensional models, I keep the
collection of topologies identical.

Exploitation efficiency still increases with TI (Fig. 6C,D). Even more than in the
two-dimensional models, the main reason for its increase with TI is the increase in
topological efficiency with TI, and this relationship is quantitatively unaffected
by making the network three-dimensional. Overlap efficiency is higher in three-
dimensional than in two-dimensional networks, and this increase of overlap
efficiency is highest at low TI (Fig. 8). This means that the relationship of overlap
efficiency with TI is flatter, and consequently so is the relationship of exploitation
efficiency with TI.

One reason why the overlap efficiency is usually higher in the fully three-
dimensional network seems obvious. The three-dimensional networks extend into a
larger volume of soil (a full cylinder or cone, rather than a thin slice of one), and
thus the likelihood of depletion zones overlapping is less. I tried modelling this by
cutting up the root networks into straight lengths and calculating the expected
overlap efficiency if these disarticulated roots were placed at random at two densities.
These densities corresponded to the three-dimensional root system in a cylinder of
soil just enclosing it, and to the two-dimensional root system in the thin rectangular
prism of soil just enclosing it. The difference in overlap efficiency between the two
disarticulated root systems was comparable with the difference in overlap efficiency
between the intact three-dimensional and two-dimensional networks. The agreement
was very good with wide depletion zones; with narrow depletion zones and networks
of low TI the random model underestimated the increase in overlap efficiency when
the branching structure became three-dimensional.

Such disagreements are to do with how the intact root systems are organized,
in ways that can either increase or decrease the extent of overlap compared
with random arrangements. In Fitter’s model some aspects of the organization
matter more in the two-dimensional model than in the three-dimensional version.
Branching angle is always 75°, so that in two dimensions most roots of order
3 are growing directly on a collision course with roots of order 2 (they form a
sort of rhomboid grid: Fig. 5). In three dimensions the extra degree of freedom
in growth direction makes such collisions much less likely. In the random model,
in contrast, when TI is low and depletion zones are narrow these zones are
quite unlikely to meet even at the higher root concentrations corresponding to
two dimensions; thus the random model then underestimates the effect of
increasing the dimensions from two to three.

This effect only occurs with networks of low TI, because when TI is high
there are no roots of order 3. Because of the constant branching angle and
regular spacing of branches, roots of order 2 lie parallel and overlap occurs
little more in two dimensions than in three (e.g. Fig. 5F). Therefore with networks
of high TI the random model tends to overestimate the effect of increasing the
dimensions.

Discussion

To summarize, the reanalysis of Fitter’s two-dimensional model using a fully
three-dimensional perspective generated the same broad conclusion: exploitation
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efficiency increased with increasing TI. Indeed this result seems intuitively obvious
enough that to argue the case qualitatively would perhaps not require a model.
However, the quantitative relationships that Fitter reported were in large part due
to differences in topological efficiency, which resulted solely from the different laws
of growth of depletion zones and root volumes. It was this that caused much of the
consistency between the three and two-dimensional models. The overlap of depletion
zones (as measured by overlap efficiency) changed much less with TI in three
dimensions than in two (Fig. 8). Increases in TI above a medium value of 0.75 had
little effect on overlap efficiency if diffusion rate was low or root growth fast.

There were three distinct components to why the overlap efficiency was different
in three dimensions than in two: (i) with two overlapping cylinders the volume of
overlap is proportionately less than the cross-sectional area of the overlap; (ii) a
three-dimensional network occupies more volume of soil, so the greater ‘dilution’
of roots will reduce the probability of overlap; and (iii) the extra degree of freedom
of movement in three dimensions disrupts the grid-like arrangements generated in
two dimensions.

The lessons from theoretical morphology are also relevant to experimental design.
Because of the difficulty of visualizing root systems non-destructively, it is usual to
perform experiments where the roots grow in rhizotrons, sandwiched between two
sheets of glass so that they are constrained to lie almost in a plane (e.g. Berntson &
Woodward, 1992). Either plants will have a fixed root topology adapted to perform
well in three dimensions, in which case this topology need not perform well in two
dimensions. Or plants will alter their branching decisions according to local nutrient
conditions, in which case the topologies that develop in a nearly two-dimensional
space should not correspond to those that develop in an unconstrained space.
Hendrick & Pregitzer (1996) review several potential reasons why root systems grown
in rhizotrons commonly differ from those growing unconstrained, but this explanation
is not mentioned.

GENERAL DISCUSSION

Necessarily this paper has so far consisted of three disjunct analyses. I now note
some common themes.

Although it is clear that it can be logically incorrect to use a two-dimensional
model, it is not so straightforward to say whether or not it is a good approximation.
In all the above cases the two-dimensional models clearly demonstrated that the
original intuition had some logical consistency. Moreover the quantitative results
were often not that dissimilar. However, in other cases two- and three-dimensional
models can give results that are very different, even qualitatively different.

One example arises in a paper by Cannings & Cruz Orive (1975). They were
modelling whether a male that leaves a group attracts more or fewer females. The
females’ rules of movement, specified in the model, mean that females coming from
some directions will encounter the solitary male rather than the group. The size of
the angle for which this is true determines whether it pays males to leave. In two
dimensions a 90° angle corresponds to 1/4 of incoming females reaching the solitary
male. But in three dimensions an angle of 90° corresponds to only just over 1/7 of
incoming females. This can make the difference whether a group is stable.
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Another example is a more abstract example from probability theory, but I
mention it because it emphasizes a further difference about three dimensions that
is relevant to many problems: there is not only more space but there is an extra
degree of freedom of movement. Imagine an animal on a two-dimensional square
grid. It moves one grid point at a time, and which of the four the directions it
chooses is random. One can prove that, given infinite time, it returns to the starting
point with probability 1: i.e. it is certain to do so. On a three-dimensional cubic
lattice this probability is not 1 but about 0.34 (Hughes, 1995). Durrett & Levin
(1994) discuss a different problem, also set on a square grid, in which the state of
each grid point has some probability of flipping to the state of a randomly chosen
neighbour. Such models have been applied to the spatial spread of genes in a
population and of genotypes in a vegetatively spreading plant. On a three-dimensional
cubic lattice a patchwork of different genotypes will persist, whereas in one and two
dimensions a monoculture will emerge.

Biomechanics provides further examples. For instance consider dome structures,
such as limpet shells or the human skull. One might naively suppose that the
mechanical properties of a dome could be gauged from those of an arch corresponding
to the dome’s cross-section. In fact there are important differences (Salvadori &
Heller, 1963). For instance, when a circular arch is loaded tensile stresses arise,
whereas in symmetric loading of a shallow spherical dome the stresses are all
compressive, meaning that structures weak in tension can safely be used. The
inadequacy of a two-dimensional analysis is also seen by comparing the properties
of a cylindrical barrel vault and a dome, both of which have the same cross-section.
The buckling load, for instance, is proportional to the thickness-to-radius ratio in a
barrel shell, rather than to the square of this ratio as in a dome.

Conversely, there are some surprising examples, of interest to biologists, of results
in three dimensions holding exactly in two dimensions. Thus the mean square
displacement after n of steps of a random walk is the same in three dimensions as
in two (Hughes, 1995). For perfect fractals the fractal dimension can be estimated
equally well from a two-dimensional projection as from the full three-dimensional
structure (Nielsen, Lynch & Weiss, 1997). And for a collection of randomly placed
roots, whatever their pattern of orientation, the mean distance from a random point
to the n’th nearest root is the same in three dimensions as in a plane section with
the same density of roots (Marriott, 1972). However, all these results are special
cases. Thus the random-walk result does not hold if the mean displacement is
considered. No biological structure is a true fractal, and roots are never randomly
placed. So these analytic results should be taken only as an indication that two
dimensions may be a reasonable approximation of three.

The general lesson that I draw is that two-dimensional models may be valuable
as an informal non-quantitative aid to thinking about three-dimensional problems.
But quantitative results from two-dimensional models often do not apply to three
dimensions, and one should beware even of qualitative results. In fact making a
model three-dimensional is often not that much more difficult; the problem has
been not realizing that it can make a difference.

In addition I would make two subsidiary points that come out from these
reanalyses. The first is that one should treat ratios that are not dimensionless with
care, if not with suspicion (cf. Stephens, 1994). If such a ratio is to be maximized
it is normally important that comparisons are made at a standard size. This is then
equivalent to maximizing a dimensionally balanced ratio. Thus in the first example
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I was maximizing the volume of eggs contained within a constant area, which is
equivalent to maximizing volume/area1.5 when area is not fixed.

The second point is that two of these studies presented numerical computer-
generated results that were incorrect even within the terms of the two-dimensional
models used by the authors. In geometrical models, as in other quantitative models,
it is always worth calculating simple cases by hand as a check.
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APPENDIX: CALCULATION OF THE SURFACE AREA OF A HELICOSPIRAL

Figure 3F defines a three-dimensional Cartesian co-ordinate system (x, y, z), where the coiling axis
is the z axis. In cylindrical co-ordinates, r measures the distance of a point from the coiling axis, and
t measures the angle about the coiling axis.

Our logarithmic helicospiral is generated by rotating, expanding, and translating a circular generating
curve. Prior to these operations t=0, the centre of the generating curve is at (rc, 0, bcrc), and its radius
is R0. Consider a very short arc of this curve, from ø to ø+dø around the curve (Fig. 3A). Its location
is (rc+R0cosø, 0, bcrc−R0sinø), which can be rewritten in the form (r0(ø), 0, b(ø)r0(ø)). Because dø is very
short, this arc is well approximated by its chord, of length and direction given by the vector

−R0sinødø

u0= 0A B.

−R0cosødø

The suffix 0 in u0 signifies that u0 is a special case of ut, when t=0.
Now consider rotating this straight line about the coiling axis through a very short angle dt, whilst

also expanding and translating it. The change of position will be

dr

St≈ rdtA B.

dz
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For a point at angle ø around the generating curve, following a logarithmic helicospiral, r=r0(ø)emt and
z=b(ø)r0(ø)emt. Thus

r0(ø)memtdt m

St≈ r0(ø)emtdt = 1 r0(ø)emtdt.A B A Bb(ø)r0(ø)memtdt b(ø)m

To a close approximation the rotation by dt has translated a straight-line section of the outline
along a straight-line path given by the vector St. The surface area generated is thus approximately the
area of the parallelogram with edges formed by the vectors u0 and St. When we are considering a
simple surface of revolution (rather than a spiral or helix),

0

St≈ A B,xdt

0

so that St and u0 are then the edges of a rectangle and we can simply calculate the area as the product
of the lengths of St and u0. In that case Pappus’ theorem holds. It also holds for a spiral or helical
shell in which the aperture is configured so that u0 is always perpendicular to the direction of growth
St; with a helical shell such apertures are not coplanar with the coiling axis and with a spiral shell
they are not planar, so Pappus’ theorem should not be applied to a cross-section. In other cases the
direction of u0 in the x–z plane affects the angle that u0 makes with St, and thus the area of the
parallelogram. This area is given by

|u0×St|=J1+m2(b(ø)sinø−cosø)2R0r0(ø)emtdødt.

This formula holds for t≠0, except that the length of ut will increase from R0dø to R0e
mtdø, so that the

above expression must be multiplied by emt. The surface area generated by rotating, expanding and
translating the vector u0 through an angle t is this modified expression integrated with respect to t.
Thus the surface area of this helical strip of shell from t=−∞ up to the aperture (t=0) is

C0.5J1/m2+(b(ø)sinø−cosø)2R0r0(ø)e2mtdøD
0

−x

=0.5J1/m2+(b(ø)sinø−cosø)2R0r0(ø)dø.

This is a special case of the formula derived by Moseley (1842) for logarithmic helicospirals with
generating curves of arbitrary shape. We then have to integrate around the aperture with respect to
ø to calculate the entire surface area of the shell. Unfortunately this must be done numerically.

As explained above, with a spiral or helix we cannot use Pappus’ theorem to calculate surface area
as the product of the periphery of the cross-section coplanar with the coiling axis and the arc length
traversed by the centre of the periphery. That approach would lead to the expression

0.5J1/m2+1+b(ø)2R0r0(ø)dø,

which overestimates or equals the correct formula given above. However, the discrepancy makes little
practical difference for realistic parameter values. An extreme case would be where the shell tripled
in diameter each revolution, bc=1, and overlap is high (F=1/6): the discrepancy is then only 1.5%.
Raup & Graus (1972) advocated this erroneous approach, and their formula contains an additional
error in that the b(ø)2 term is divided by m2. Stone’s (1997) approach of converting the cross-section to
a plane curve perpendicular to the helical trajectory works exaxtly only if the helix is not an expanding
spiral.

Similarly in an earlier paper (Hutchinson, 1990a) I was in error in equating shell secretion rates at
different sites around the aperture with the arc length traversed by points at those sites (Rice, 1998,
follows me in this). Consider a narrow helical strip of shell generated by one short length of the
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aperture. If the strip of shell is considered fixed, but the aperture becomes more inclined to the
direction of growth, the length of aperture generating this strip increases, so that each mantle cell has
to secrete less shell material. Different parts of a planar aperture make different angles with the
direction of growth, and I had overlooked that this affects the rate at which different parts of a planar
aperture need to secrete shell.

However, the main point of that paper still holds; relative secretion rates around an aperture would
have to be controlled impossibly accurately for this to be the mechanism that regulates the apical
angle of a shell (∝bc). As in Hutchinson (1990a), let us consider parameters typical of a terrestrial
helicid (m=0.068, and R0/rc=0.415) and compare growth rates around a circular aperture coplanar
with the coiling axis. It is obvious that in the planispiral case (bc=0) the sites of maximum and
minimum shell secretion are at ø=0° and ø=180°. When bc=1 the maximum and minimum are at
ø=−0.65° and ø=180.66°, only very slightly off a diameter; at ø=0° secretion rate is only 0.1%
below that at the maximum.
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