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ABSTRACT 
 
Biologists have repeatedly rediscovered classical models from physics predicting collision 
rates in an ideal gas. These models, and their two-dimensional analogues, have been used 
to predict rates and durations of encounters among animals or social groups that move 
randomly and independently, given population density, velocity, and distance at which an 
encounter occurs. They have helped to separate cases of mixed-species association based 
on behavioural attraction from those that simply reflect high population densities, and to 
detect cases of attraction or avoidance among conspecifics. They have been used to 
estimate the impact of population density, speeds of movement and size on rates of 
encounter between members of the opposite sex, between gametes, between predators and 
prey, and between observers and the individuals that they are counting. One limitation of 
published models has been that they predict rates of encounter, but give no means of 
determining whether observations differ significantly from predictions. Another 
uncertainty is the robustness of the predictions when animal movements deviate from the 
model’s assumptions in specific, biologically relevant ways. Here, we review applications 
of the ideal gas model, derive extensions of the model to cover some more realistic 
movement patterns, correct several errors that have arisen in the literature, and show how 
to generate confidence limits for expected rates of encounter among independently 
moving individuals. We illustrate these results using data from mangabey monkeys 
originally used along with the ideal gas model to argue that groups avoid each other. 
Although agent-based simulations provide a more flexible alternative approach, the ideal 
gas model remains both a valuable null model and a useful, less onerous, approximation to 
biological reality. 
 
Key words: Cercocebus albigena, contact duration, encounter rate, fertilization kinetics, 
home range, line transect, mangabey, predation rate, search theory, random walk. 
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I. INTRODUCTION: A HISTORY OF REPEATED REDISCOVERY 
 
In 1860, the physicist James Clerk Maxwell worked out the expected rates of collision 
among molecules in an ideal gas, given the concentration of molecules in the gas, their 
mean speed, and their “cross section”, a measure of their size. His formula assumes that 
the movements of the molecules are independent, equally likely in all directions, and with 
speeds drawn from a “Maxwell-Boltzmann” distribution [i.e. the x and y components of 
their velocities are normally distributed: e.g. Maxwell (1860); Kauzmann (1966, chapter 
5)]. These assumptions have proven attractive to biologists, who have repeatedly 
rediscovered Maxwell’s approach in constructing models of encounter rates between 
moving animals. The image of moving animals as molecules has proven equally 
appealing, and in the biological literature the term “ideal gas model” has come to be 
attached to ideas that have developed from these assumptions. 
 One biological use of the ideal gas approach is as a null model. For example, Waser 
(1975) used it to detect cryptic behavioural attraction between adults in a “solitary” 
antelope species. Because observed rates of encounter among individual bushbuck 
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(Tragelaphus scriptus) were an order of magnitude higher than expected if bushbuck 
behaved like gas molecules in a two-dimensional bottle, he argued that individual 
movements were not independent. Waser (1976) subsequently applied the same null 
model to detect cryptic cases of behavioural avoidance between social groups of grey-
cheeked mangabeys (Cercocebus albigena). Mitani et al. (1991) used the approach to 
show that encounter rates and association durations among some classes of orang-utans 
(Pongo pygmaeus) were greater than expected by chance. Similarly Schülke & Kappeler 
(2003) and Gursky (2005) working on prosimians (Tarsius spectrum and Phaner furcifer) 
demonstrated associations between members of social pairs that had usually been 
considered to forage solitarily. Barrett & Lowen (1998) and Sugiura et al. (2000) have 
used the ideal gas model to ask why patterns of interanimal spacing sometimes differ 
among primate populations at different densities. Do individuals change their behaviour 
with density, or is it simply that encounter rates change with density, and the same 
behavioural rules expressed at different rates of encounter produce different spacing 
patterns? 
 Ideal gas models are readily generalized to investigate patterns of encounter between, 
as well as within, species. Thus Crowley et al. (1991) used this approach twice in the same 
model of mating choosiness, once for encountering predators and once for encountering 
mates. Waser (1982, 1984, 1987) used the ideal gas model to generate null predictions 
regarding the frequency and duration of mixed-species primate associations. Several other 
investigators (Cords, 1987; Whitesides, 1989; Holenweg, Noë & Schabel, 1996) have 
subsequently used this approach. 
 In most of the above examples, and others (e.g. De Vita, Kelly & Payne, 1982), the 
ideal gas model provides a null hypothesis and interest focuses on deviations from its 
predictions. In other cases, ideal gas assumptions are used to estimate encounter rates as a 
component of some larger model. For example, Rowcliffe, Cowlishaw & Long (2003) 
recently modelled the effect of human hunting on mammalian population density 
assuming that prey individuals encounter snares at rates predicted using ideal gas logic. 
Jetz et al. (2004) modelled how home range size scales with body size, assuming that the 
proportion of resources lost to neighbours is related to encounter rate; the ideal gas model 
enabled the scaling of encounter rate to be estimated from the known scaling relationships 
of speed of movement, population density, and detection distance. 
 One context in which the ideal gas model has often been applied is mate finding. 
Mosimann (1958) analysed the probability of a female encountering no males during the 
breeding season in low-density populations. In effect, he quantified the suggestion of 
Allee (1938) that populations below some minimum density would decline because of the 
difficulty of finding mates. Katona (1973) modelled the effect of diffusible sex 
pheromones in reducing the time taken for planktonic copepods to find mates. Manica & 
Johnstone (2004) estimated the reduction in a male bug’s encounter rate with females if he 
stopped moving around so as to be able to guard a brood. Similarly, a series of 
primatology papers have applied the ideal gas model to compare mating success of a 
roving polygamous strategy with that of monogamy (van Schaik & Dunbar, 1990; Dunbar, 
1995, 2000). Another application was to estimate infanticide rates in great apes, under the 
assumption that infanticide occurs if a male fails to encounter the female during oestrus, 
but does encounter her while she is nursing (Harcourt & Greenberg, 2001). 
  In the field of fertilization kinetics, and particularly concerning the issue of the 
evolution of anisogamy, Scudo (1967, p. 285) noted that “the adaptive value of various 
modes of reproduction can be studied…using the same tools which classical statistical 
mechanics applies to the collision of particles”. Research in this field continues to be 
active (Randerson & Hurst, 2001; Dusenbery, 2002, 2006), with most models taking as 
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their starting point the ideal gas model of encounter rate (e.g. Vogel et al., 1982; Cox & 
Sethian, 1985; Dusenbery, 2000). One issue of recent interest is the function and optimal 
thickness of the jelly coat around some eggs; it increases target size but tends to decrease 
sinking speed, which the gas model predicts to have opposite, although unequal, effects on 
encounter rate with sperm (Farley & Levitan, 2001; Podolsky, 2002). 
  Lotka (1924, p. 358) derived the mean free path of a predator (the distance moved 
between successive encounters with prey) from “the elementary kinetic theory of gases”. 
He went on to show that the frequency of predator-prey encounters should be proportional 
to predator speed and “size”, and to population densities of predator and prey, using this 
result to justify the multiplicative form of the predator-prey encounter term in his famous 
equation. Laing (1938), following Stanley (1932), used the same approach to show that 
parasitoids found hosts at too high a rate to be explained by random movement, generating 
one of the first quantitative arguments in evidence of area-restricted search. Gerritsen & 
Strickler (1977) re-derived formulae for encounter rates in three dimensions and these 
have had “…considerable influence in subsequent studies of plankton feeding” (Evans, 
1989, p. 415). One instance is understanding rates and size-selectivity of predation on the 
larvae of commercially significant fish (e.g. Fuiman & Gamble, 1989; Paradis & Pepin, 
2001). Letcher et al. (1996) modelled predation and starvation in larval fish using the ideal 
gas model twice, to calculate encounter rate with both its predators and prey. 
 In a quite different context, Yapp (1956) suggested that “…encounters between a 
moving observer and the individuals of a mobile species could be likened to the collisions 
between a molecule of one kind and molecules of another”. Accordingly, Yapp (1956) and 
Skellam (1958) applied the encounter-rate equation in reverse, to estimate the density of a 
target species from the number of times an observer walking a line transect encounters the 
species, taking into account the observer’s speed, the average speed of target individuals, 
and the distance at which the observer can detect them. Estimates of seabird numbers are 
often made from such data collected from ships or aircraft, but curiously the literature 
seems to have largely lost sight of the ideal gas approach. The modern theory of “distance 
sampling” (Buckland et al., 2001) also estimates density from transect data and has 
become a rather sophisticated technique, but it assumes that the targets are stationary (and 
claims reasonable accuracy only if they move at less than half the speed of the observer: 
Buckland et al., 2001, p. 31). Gaston & Smith (1984) and Spear, Nur & Ainley (1992) 
independently redeveloped some aspects of the ideal gas model to correct for biases when 
the birds predominantly fly in a particular direction. 
 “Search theory”, originally developed to optimize the search for submarines during 
World War II, leads to the same encounter-rate predictions as ideal gas models in the null 
case of randomly moving searchers and randomly moving targets (Koopman, 1956; 
Dusenbery, 1992). This literature was the inspiration for biologists to apply the ideal gas 
model in a variety of situations: encounters between zooplankton predators and 
phytoplankton prey (Gerritsen & Strickler, 1977), the effect of prey aggregation on risk of 
predation (Olson, 1964; Kiltie, 1980), encounters among gametes of aquatic plants (Cox, 
1983), and the evolution of parthenogenesis in sparse populations (Gerritsen, 1980b). 
 During this long history of repeated rediscovery, two limitations of the ideal gas 
approach have surfaced. First, while many authors have developed similar approaches to 
estimating expected encounter rate, there has been little discussion of the confidence limits 
on the estimates (but see Skellam, 1958). Thus it has not been the practice to compare 
observations with predictions in a rigorous statistical way (Schülke & Kappeler, 2003, 
provide an exception). 
 Second, the “random movement” assumption seems unrealistic in many biological 
applications. This limitation was noted by Lotka (1924, p. 360) in what was apparently the 
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first discovery of the ideal gas model by a biologist: “…the type of motion presented by 
living organisms [unlike that shown by ideal gas molecules]…can be regarded as 
containing both a systematically directed and also a random element…mathematical 
treatment…may appear to threaten formidable difficulties. It is to be hoped that this will 
not altogether prevent its attack.” 
 Maxwell’s model of an ideal gas may fit the movements of dilute gas molecules 
rather closely, but animals’ movements are almost certain to deviate from the assumptions 
in some significant ways. In an ideal gas, molecules are randomly distributed, move long 
distances in straight lines between encounters, and the size of the bottle that contains them 
is relatively very large. By contrast, real animals may spend more time in some habitats 
than others, deviate frequently from straight lines, and be restricted to partially 
overlapping home ranges. Animal populations may further violate the assumptions by 
showing anisotropy in the directions of movement, or by the speeds not following a 
Maxwell-Boltzmann distribution. Biologists need to know whether such violations change 
the rate of encounter substantially, and, if so, they might want to measure the relevant 
characteristics of the paths of real animals so as to incorporate these parameters into more 
sophisticated models. 
  The goals of this paper are to review the basic results of ideal gas models of animal 
encounter, to examine the sensitivity of model predictions to some simple, but probably 
common, deviations of real animals from model assumptions, and to illustrate how some 
of these complications can be incorporated into the models. In addition, we correct a 
number of errors in this literature, describe how to estimate confidence limits on encounter 
rates, and illustrate our approaches by reanalyzing the data set used by Waser (1976) in his 
early application of the ideal gas model to interactions among primate groups. 
 
 
II. DERIVATION OF BASIC RESULTS 
 
(1) The ideal gas model 

In this section we state the standard analytic results from the ideal gas model. Strictly 
speaking, the “ideal gas model” applies only to molecules moving in three dimensions 
with a Maxwell-Boltzmann distribution of speeds and colliding inelastically, but we will 
follow the biological literature in applying the phrase more generally. So assume initially 
that individuals are moving independently at constant speed v, in a plane, in straight lines 
oriented randomly with a uniform distribution. We focus on one individual and it is 
helpful to consider the motion of all other individuals relative to that focal individual (Fig. 
1); in this perspective, the focal individual appears stationary. By integrating over all 
possible angles between the directions of movement, one can calculate (Fig. 1) that the 
mean speed of the other individuals relative to the focal individual is 
 4v/. (1) 
 We consider that two individuals encounter each other if their centres approach 
within a detection distance D. We assume that contact does not change their speed or 
direction. Each non-focal individual sweeps out a strip 2D wide (Fig. 1C) such that if the 
focal individual lies within the strip an encounter occurs (remember that we are viewing 
motion relative to the “stationary” focal individual). In time t the area swept out by each 
individual is on average 2D  4v/  t. If the density of individuals is , an area A should 
contain on average A individuals; these will have swept out strips of total area A  
8Dvt/. The number of randomly positioned strips (= individuals) that cover the focal 
individual follows a Poisson distribution, with mean (A8Dvt/)/A = 8Dvt/. Thus the 
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expected number of encounters after moving a distance x is 8Dx/, and an individual’s 
encounter rate is 
 8Dv/. (2) 
 The Poisson distribution of encounter number implies that the probability that an 
individual has no encounters in time t is 
 exp(–8vDt/),  (3) 
which can be subtracted from 1 to give the probability of at least one encounter. Since 
encounters are random and independent, the time between encounters has an exponential 
distribution, with the mean interval between initial contacts given by the reciprocal of the 
encounter rate: 
 /(8Dv).  (4) 
The mean distance between initial contacts (mean free path) is speed  mean interval 
= /(8D). If we are concerned with the total number of encounters in an area A, we can 
multiply the individual encounter rate by the mean number of animals in the area (A) 
divided by 2 (because each encounter is experienced by two individuals), giving the 
expected number of encounters as 
 42ADvt/.  (5) 
 So far we have assumed that the focal individual is the same as any of the other 
individuals that it encounters, but the ideal gas model has often been applied to encounters 
between different classes (e.g. sexes) of individuals. In that case the encounter-rate 
formula describes the number of encounters of an individual of one class if ρ refers to the 
density of the other class. For the total number of interclass encounters within an area A, 
simply replace the term 2 in (5) by ab, the product of the densities of each class (cf. the 
law of mass action from chemistry). When the classes move at different speeds, the 4v/π 
term for mean relative speed must also be modified, as discussed in the next section. 
 We have been predicting encounter rate assuming knowledge of density, detection 
distance and speed. Sometimes we might measure encounter rate and want to estimate one 
of the other variables, such as when seeking to estimate population density of pelagic 
seabirds from the number seen from a ship. Similar strategies could be used as rules-of-
thumb by non-human animals. For instance, Pratt (2005) shows how ants (Temnothorax 
albipennis) deciding between two nest sites change their behaviour when a critical quorum 
of scouts agree on one site, and this is apparently sensed by encounter rate with other ants. 
When the number of encounters counted is large, it is sufficient simply to rearrange the 
above formulae to achieve the estimation of density from observed encounter rate. But 
when few encounters have been observed one should specify a prior distribution of 
encounter rates and use a Bayesian approach to estimate the true encounter rate. A 
uniform prior may not be the most appropriate; in the absence of further knowledge, for a 
Poisson-distributed variable (like number of encounters) with mean μ there are theoretical 
arguments in favour of a prior distribution with density proportional to μ–0.5 (Jeffreys, 
1961, p. 186). Then, if we have observed n encounters over a time t, an unbiased estimate 
of density is calculated from an encounter rate of (n + 0.5)/t, rather than n/t. 
 It is straightforward to extend these lines of argument to apply to three dimensions. In 
that case the mean relative speed is 
 4v/3  (6) 
(Fig. 2). The trajectory of each individual relative to the focal individual sweeps out a 
bullet-shaped solid with the same volume as a cylinder of radius D and length 4v/3  t. So 
its volume is D2  4vt/3, and the focal individual’s expected encounter rate is 
 4D2v/3.  (7) 
 Physicists have also derived equations for the rate at which molecules of an ideal gas 
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hit the walls of a container (rate = v/4 per unit area; Kauzmann, 1966, p. 179); the two-
dimensional analogue giving hits per unit length is  
 v/,  (8) 
which has been applied by Lowen & Dunbar (1994) to analyse the defendability of 
primate territories of different sizes. 
 
(2) Associations versus encounters; counts and durations of associations 

The ideal gas model predicts the number of initiations of encounters in time t. Thus when 
testing predictions one should ignore encounters that have already started at the beginning 
of the period of observation. Fewer observed encounters than predicted could occur 
because individuals either avoid each other or persistently stay within contact (Struhsaker, 
1981). If, instead of following an individual animal continuously, one made instantaneous 
observations of it at n intervals, the expected number of “associations” (i.e. ongoing 
occurrences of other individuals within a distance D, rather than instances of them 
crossing into this region) is not given by the ideal gas model. Rather, the appropriate 
formula in the two-dimensional case is  
 nD2.  (9) 
This is simply the sum of the areas of n disks of radius D (think of a series of n disks 
replacing each of the 2D-wide strips considered above: Fig. 3A). The formula assumes 
that if on n successive sampling occasions the same pair of individuals are together, that 
counts as n associations. 
 Unlike with the rate of encounters, the formula for the number of associations is 
unaffected by speeds or by non-uniform distributions of directions (cf. Section III). 
Consequently there are times when this approach may be more appropriate: for example, 
when estimating seabird densities from counts from ships, it may be simpler and more 
reliable to make periodic instantaneous counts of numbers occupying an area around the 
ship than to count the number of new encounters over a period and apply the ideal gas 
model (e.g. Tasker et al., 1984). 
 It is important not to confuse the two approaches. Schülke & Kappeler (2003) made 
counts of observation times (every 5 min) when individuals were in contact, where two 
consecutive observations of the same individuals in contact were counted as two 
“encounters”. They should have compared their observations against nD2, not the 
8Dvt/ from the ideal gas model. Likewise, at any single moment of observation, or 
summed over n such observations, the predicted number of individuals observed between 
distances D – δD and D + δD from a focal individual is directly proportional to D for 
small δD (Fig. 3B). By contrast, the ideal gas model predicts that, over a long period of 
observation, the number whose closest approach lies within this range of distances is a 
constant independent of D (Fig. 3C; cf. Gursky, 2005; different results hold for three 
dimensions). 
 At any instant the mean number of other individuals with which an individual is in 
contact is D2: in comparison with Fig. 3A, each non-focal individual now is represented 
by only one disc. If each individual’s position is independent of the positions of others, 
how many discs cover the focal individual is Poisson distributed. Thus the probability (or 
proportion of time) that an individual is in contact with at least one other is 
 1 – exp(–D2);  (10) 
this corrects the equations in Whitesides (1989) and Holenweg et al. (1996). 
 The mean duration of an association is the mean number of contacts at one moment 
(D2) divided by the rate at which encounters occur (given by the ideal gas model). So 
with constant speeds in two dimensions, mean duration is D2/(8Dv/), which 
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simplifies to 
 2D/(8v).  (11) 
This formula corrects that derived by Waser (1984) and used by others (e.g. Holenweg et 
al., 1996); see Section V(1). 
 In three dimensions the mean number of other individuals with which an individual is 
in contact at any moment is 
 (4/3)D3  (12) 
(i.e. the volume of a sphere of radius D around each non-focal individual  their density), 
and the mean duration of an encounter is this divided by encounter rate, yielding  
 D/v.  (13) 
 
 
III. ANALYTICALLY TRACTABLE COMPLICATIONS: DEVIATIONS FROM 
MODEL ASSUMPTIONS ABOUT DETECTION DISTANCE, DENSITY, SPEED 
AND DIRECTION 
 
(1) Detection distance 

If the detection distance varies over the environment (e.g. because visibility depends on 
the vegetation), it is still valid to use the mean detection distance in the standard 
encounter-rate formulae for two dimensions; but obviously the variance in encounter rate 
will now be higher (the distribution is no longer Poisson). In the three-dimensional case, 
because of the D2 term in those formulae, variation in detection distance about the mean 
does affect mean encounter rate. Calculating the mean square of detection distance 
sidesteps this complication. 
 
(2) Density 

If individuals are distributed patchily so that density is consistently higher in some 
regions, the mean density can be used in the standard formulae, but again the variance in 
encounter rate will be higher than for the Poisson distribution. Note that mean density 
must be calculated by integrating over the time spent in each region, not over area. For 
instance, suppose that there are two habitats of equal area, and that the population is three 
times as dense in one habitat, so the densities are 0.5 and 1.5. If the focal individual 
spends equal time in the two habitats, the mean density that it experiences is , so the 
formula for encounter rate is unchanged. If instead it spends three times as long in the 
high-density patch (such a tendency in the population might itself have generated the 
higher density), the mean density that it experiences is 1.25, so the expected encounter 
rate is increased by a factor of 1.25. If the density is higher in one habitat simply because 
the animals move more slowly there, then the mean encounter rates within the two habitats 
are the same (the product of density and speed is what matters). Gordon, Paul & Thorpe 
(1993), working on the ant Lasius fuliginosus, explained a lower than expected increase in 
encounter rate with density as resulting from a tendency to aggregate at low densities. 
Without knowing how the aggregation is produced—reduced speed in the area of 
aggregation or a reduced tendency to head away from it—one cannot predict whether a 
tendency to aggregate will affect encounter rate, but there was evidence for the latter 
mechanism in this example. 
 The ideal gas model has often been applied when individuals are confined to home 
ranges. In cases where two individuals share the same home range, their expected 
encounter rate is obtained by setting ρ = 1/(home range) (e.g. Schülke & Kappeler, 2003). 
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If a male home range is considered to enclose the complete home ranges of several 
females, his expected encounter rate with them is obtained by setting ρ = (number of 
females)/(male home range) (e.g. van Schaik & Dunbar, 1990). If home ranges of two 
individuals overlap only partially, the situation should be analysed as in Section V(3); it is 
wrong simply to set ρ = 1/(mean home range size) (cf. Gursky, 2005). 
 In some two-class systems an individual disappears from the system after one 
encounter, as when a sperm sticks to an egg or when a predator meets a prey item and the 
latter either is eaten or hides. If these disappearing items do not replenish, their density 
will decrease with time, so that encounter rate also decreases. Suppose that the mean 
relative speed of predator and prey is w, that the initial density of prey is ρp and that of 
predators ρP. The probability of a prey item meeting no predator in time t is 
 exp(–2wρPDt),  (14) 
so that in a large area A the number of encounters would be Aρp[1 – exp(–2wρPDt)] 
distributed randomly over AρP predators. Hence the mean rate of encounter 
[CORRECTION: NUMBER OF ENCOUNTERS] for a single predator is 
 (ρp/ρP)[1 – exp(–2wρPDt)]  (15) 
and the probability of a predator encountering no prey is 
 exp(–(ρp/ρP)[1 – exp(–2wρPDt)]).  (16) 
This last formula is particularly relevant in calculating the probability of an egg not having 
been fertilized by a sperm, an approach developed in Vogel et al.’s (1982) “Don Ottavio” 
model. 
 A related complication modelled by Nicolis, Theraulaz & Deneubourg (2005) occurs 
when individuals that have met stay together immobile while they interact, but after some 
time split up. Such is what often happens in ants. The temporary immobility obviously 
lowers the encounter rate but Nicolis et al. (2005) further showed that with long 
interaction periods individual encounter rate tends towards being proportional to density1/2 
rather than the linear relationship of the ideal gas model. 
 
(3) Speed 

If individuals vary their speed or if speed varies among individuals, the ideal gas formulae 
must be amended. In the two-dimensional case, for instance, the term 4v/ must be 
replaced by a revised mean relative speed between the focal individual and other 
individuals from the population. To calculate this it is necessary to know the distribution 
of absolute speeds, not just their means, and then to integrate over the range of speeds of 
the focal individual, over the range of speeds of the other individuals, and over all possible 
differences in their directions. The formula thus becomes 

   






 


0 0

π

0

22 π/ddd cos2-)()(
u v θ

vu uvθθuvvuvpup ,  (17) 

where pu(u) = probability of the focal individual having speed u, pv(v) = probability of a 
non-focal individual having speed v, and  = the angle between trajectories. The central 
term is the cosine formula to calculate the length of the third side of a triangle if two sides 
and the angle between them are known. The extension to three dimensions requires only 
replacing the factor 1/π by 0.5 sin  within the integral, so as to weight the average 
according to the non-uniform distribution of  (Fig. 2). The integration must be done 
numerically except in some special cases of analytic tractability. 
 One tractable case, of widespread applicability, occurs when speeds in the population 
follow a Maxwell-Boltzmann distribution. In the two-dimensional case its probability 
density function is 
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where r = root-mean-square speed. These skewed distributions are reasonable 
approximations to several observed speed distributions (Okubo, 1980; De Vita et al., 
1982; Waser, 1984; Mitani et al., 1991), and are the speed distributions expected if 
animals are following a fine-scale random walk but speeds are measured on a coarser 
scale. In a population of animals with a Maxwell-Boltzmann distribution of speeds, the 
mean relative speed is 
 2 v ,  (20) 
where v  is the mean speed. 
 This result assumes that each individual’s speed is independently drawn from the 
distribution. Suppose instead that the variation in speed was to a large extent an effect of 
time of day (for instance, mites running around on a paving stone might all speed up as the 
temperature increases in the afternoon). In the extreme case of all individuals travelling at 
the same speed v at any particular time of day, the mean relative speed would be 4v/ at 
any one time and thus 4 v / averaged over the whole period. 
 If we know the speed of the focal individual, we can refine our predictions. This is 
relevant when calculating encounter rates between two classes of individual, such as 
predators and prey, that move at different speeds. In many examples one class of 
individual is stationary (e.g. eggs, when predicting their rate of fertilization by more 
motile sperm), which simplifies the encounter-rate formula to vDρ2  for two dimensions, 

or vD 2πρ  for three dimensions. If the two classes of individual travel consistently at two 
different non-zero speeds, in three dimensions the encounter rate for an individual of one 
class is 
 πD2(u2 + v2/3)/u  (21) 
(e.g. Gerritsen & Strickler, 1977), where  is the density of the other class and v is the 
speed of whichever class is slower. Unfortunately in two dimensions the term for mean 
relative speed when u  v involves an elliptic integral. But if both predator and prey have 
Maxwell-Boltzmann distributions of speeds, with mean speeds u  and v , then the mean 
relative speed is simply 

 vu 22  .  (22) 
[Skellam (1958) proves this for the two-dimensional case and it also holds in three 
dimensions; see also Evans (1989) for a neat extension to include turbulence in the 
media.] 
 Small inter-individual differences in speed have rather little effect on encounter rate. 
For instance, Gursky (2005) was interested in contact rates between male and female 
partners; males moved up to 1.49 times as far as their partners. In that case Gursky’s use 
of the mean speed of partners is liable to underestimate encounter rate by a factor of only 
0.95 if each individual’s speed was constant, or 0.98 assuming Maxwell-Boltzmann 
distributions. 
 An increase in a predator’s speed increases its rate of encountering prey; the 
relationship is approximately linear when the predator moves faster than the prey, but 
becomes more curved at slower speeds (Fig. 4). This pattern has biologically interesting 
consequences. For example, in the two-dimensional case, if prey all move with speed v, 
and the predator moves at 2v, the mean relative speed is 2.13v; but if the predator moves at 
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v/2, the mean relative speed is only 1.06v. So a predator moving at half the speed of its 
prey gains only a 6% increase in encounter rate over that had it remained motionless, 
which, supposing some costs to moving, suggests advantages of a sit-and-wait tactic. 
Gerritsen & Strickler (1977) developed such optimality arguments quantitatively by 
introducing trade-offs relating speed to power requirements and detection distance. 
Similarly in the optimality model of Dusenbery (2006) larger gametes benefit from their 
faster speed (as well as from increased encounter distance and longevity), but fewer can be 
produced. 
 Sometimes what matters is the number of encounters not per time, but per distance 
moved. For instance an auk carrying fish from its feeding grounds to its nest is seeking to 
reduce the total number of encounters with kleptoparasites over the course of the journey, 
not the rate at which they occur. The number of encounters per distance moved by the 
focal individual is obtained by dividing formulae for rate of encounter by the speed of the 
focal individual. The number of encounters is then a decreasing function of its speed. 
 
(4) Direction 

The formulae also must be amended if the directions of movement are not uniformly 
distributed, again because this affects the mean relative speed. This might be relevant for 
animals on a migration or for a population of animals that all tend to avoid moving 
directly upwind or against a water current. Particular attention has been paid to this issue 
by researchers estimating densities of seabirds from sightings seen from ships or aircraft, 
because, for instance, birds commuting between feeding sites and nesting colonies are 
often predominantly headed in a common direction. Spear et al. (1992) proposed 
recording the heading and speed of each bird seen so as to correct density estimates 
individually. The estimated density is then the observed encounter rate divided by 

   iiiii θvuvuD cos-2 22 , [CORRECTION:   iiiii θvuvuD cos 2-2 22 ]  (23) 

where ui and vi are the speeds of observer and the ith bird, and θi is the angle between their 
directions of travel. Spear et al. (1992) tabulated how the effect of θ on expected 
encounter rate depends on the ratio of speeds. 
 As another example, consider a stream of migrating wildebeest within which a male 
is attempting to intercept receptive females. Imagine that within the migrating column 
females are moving in parallel, that their speeds follow a two-dimensional Maxwell-
Boltzmann distribution, and that the male travels consistently at their mean speed v ; then 
his mean speed relative to females is 0.39 v  if moving with the flow, 1.38 v  if 
perpendicular to the flow, and 1.89 v  if against the flow. So he encounters more females 
by moving perpendicular to the flow than moving alternately with and against it (even 
ignoring the tendency to re-encounter the same females in the latter case). Gerritsen 
(1980a) applied similar arguments to the three-dimensional world of plankton, for 
instance predicting that predators should move horizontally in response to vertical 
migrations or “hop and sink” locomotion of their prey. Anderson, Gurarie & Zabel (2005) 
developed the ideal gas model in terms of two components to movement, a directed 
component and a random component, and applied it to model predation of migrating 
salmon. 
 
 
IV. TRACKS THAT ARE NOT STRAIGHT 
 
Many of these results break down if individuals do not always travel in straight lines, for 
instance if they take some sort of random walk. The reason is that bent paths, unlike 
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straight ones, can cross one another more than once. Moreover, random-walking 
individuals sometimes backtrack, so one encounter with another individual is relatively 
likely to be followed by a second encounter with the same individual before they have had 
a chance to move far apart. The number of encounters among random-walking individuals 
no longer follows a Poisson distribution, with more chance of many encounters or very 
few. This invalidates formulae of the form exp(–kwρDt) for the probability of 
encountering no items [e.g. as applied when a single encounter suffices to remove a prey 
item or gamete from the population: Section III(2)]. Nor do the intervals between 
encounters remain exponentially distributed. 
 Perhaps surprisingly, expected encounter rates are identical whether or not 
individuals move in straight lines. However, for random-walking individuals many 
encounters are recontacts between the same individuals, separated by only brief periods 
apart. Observers might overlook brief periods apart and thus underestimate encounter rate. 
For instance, Holenweg et al. (1996) introduced a bias into their test of the ideal gas 
model by explicitly ignoring any change of association status lasting less than 30 min. 
 Often of more concern than the number of encounters is the number of different 
individuals encountered. Fewer individuals will be encountered if paths are not straight, 
but we know of no analytic formulae to make quantitative predictions. However, so long 
as individuals are moving independently, the number of different individuals encountered 
will follow a Poisson distribution. Also, doubling the density of individuals still doubles 
the expected number of different individuals encountered. 
 It may help to explain these results geometrically. When deriving the formula for 
encounter rate, we envisaged a strip swept out around the trajectory of an individual 
relative to the focal individual (Fig. 1); the area of the strip gave the probability of a 
randomly placed strip covering the focal individual and thus of an encounter. Changes in 
direction of the trajectory do not affect the area of the strip if areas in which the strip 
overlaps itself are counted twice (hence the number of encounters is still as predicted by 
the gas model). But one must count areas of overlap only once to calculate the probability 
of two individuals ever encountering each other. If individuals move with a regularly 
turning trajectory (e.g. the sinusoidal movement of fish or the spiral trajectory of sperm: 
Rosenthal & Hempel, 1970; Farley, 2002) it may be feasible to calculate this area or 
volume analytically, at least if the items encountered are stationary [see Section V(6)]. 
Otherwise we must turn to simulation. 
 
(1) Monte-Carlo simulations 

Almost fifty years ago, Skellam (1958, p. 398) noted, “Whereas the expected number of 
encounters does not appear to depend on the shapes of the paths, the variance of the 
number of encounters does…in order to provide concrete support for the theoretical 
formulae given earlier and the conjectures outlined above…[one approach is] to set up 
laboratory experiments on Monte Carlo lines”. Skellam then proceeded to simulate animal 
movements by moving coloured pins on a triangular lattice on graph paper. Being in a 
position to set up “experiments on Monte Carlo lines” with enormously more power than 
Skellam, we have written a computer simulation to quantify the consequences of animal 
paths deviating from straight lines. 
 In these simulations we consider the track of each individual as a series of short 
straight-line steps of constant duration. This is a flexible and widely used approach to 
model meandering tracks, and simplifies the calculation of whether two individuals come 
within range. Since we count only encounters involving one focal individual, and since 
each simulation run covers a finite time, we need consider only those individuals that 
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would have time to meet the focal individual if they headed straight towards each other at 
the specified maximum speed. Such individuals lie within a circular arena centred on the 
focal individual; as the simulation progresses, this circle gets smaller and many 
individuals become safe to ignore. The initial number of individuals in the arena is 
generated from a Poisson distribution with mean given by density  arena area. Their 
starting positions and directions are randomly allocated assuming uniform distributions. 
 
(2) Correlated random walks 

A correlated random walk (successive steps have similar directions) fits most real animal 
trajectories better than an uncorrelated random walk (e.g. Bergman, Schaefer & Luttich, 
2000); one can imagine many reasons why animals tend to avoid backtracking. 
Unsurprisingly, as the correlation in direction between steps increases, the encounter rate 
more closely matches predictions based on straight-line trajectories. 
 To quantify this effect, we modelled the change in direction each step as fitting a von 
Mises distribution, which is roughly the equivalent of a Normal distribution for angular 
data (Fisher, 1993). The parameter  alters the dispersion of turning angle about a mean 
change of direction of 0, but in Fig. 5 we measure this dispersion in more intuitive terms 
as the percentage of times the direction changes by less than 90 (“50% steps forward” 
represents an uncorrelated random walk and “100% steps forward” a straight line). Fig. 
5A and B show that as individuals follow more convoluted paths the distribution of the 
number of encounters changes from a Poisson distribution to one with the same mean but 
a greater variance. Fig. 5C shows the accompanying decrease in the number of different 
individuals encountered. Although the broad patterns shown in Fig. 5 are consistent, it is 
apparent that turning angle distribution, detection distance, step length and step number all 
have interacting non-linear effects, so quantitative predictions are possible only using 
simulations. 
 

(3) Rebounds 

So far we have assumed that individuals move independently of each other. Another 
possibility is that when they contact they “rebound” so as to avoid each other. For 
simplicity, and to utilize results from physics, our assumption here is that the separation 
distance that counts as an encounter is the same as the distance at which rebounds occur. 
 After a collision, individuals are moving in different directions and cannot contact 
each other again without rebounding off further individuals, so one might suppose that the 
ideal gas model would continue to fit well. In fact, when rebounds occur the ideal gas 
model underestimates encounter rate (Fig. 6). Physicists modelling dense gases have 
concentrated on two effects (Chapman & Cowling, 1952, p. 274). One is that each particle 
excludes others from its immediate surroundings, which has an effect of decreasing the 
area available for movement and thus increasing effective density. The other effect is that 
when two particles lie close together each shields the other from contact with a third 
particle; later models have considered clusters of more than two particles screening each 
other. In two dimensions, based on modelling clusters of ≤ 4 individuals, the predicted rate 
of encounter 8Dv/ must be multiplied by a polynomial function of D2: 
 1 + 0.7820D2/2 (1 + 0.5322D2/2 (1 + 0.3336D2/2)) (24) 
[see van Rensburg (1993) for higher-order “virial coefficients” and those for three as well 
as two dimensions]. 
 Even formulae based on this approach still underestimate encounter rates at very high 
densities. At the extreme, individuals are packed in a crystalline fashion; the only 
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movement possible is a slight jostling back and forth from one neighbour to the other; as 
density tends towards 2/(3D2) the collision rate tends to infinity. We produced estimates 
of encounter rate at high densities using a refined version of our Monte Carlo simulation 
in which individuals encountering each other immediately head directly away, but 
otherwise move in straight lines at constant speed [Fig. 6A; cf. the simulation by Luding 
(2001) in which speeds were Maxwell-Boltzmann distributed and collisions preserved 
momentum and energy]. 
 Fortunately, biological situations to which the ideal gas model has been applied are 
rarely so extreme. Suppose that an encounter occurs when individuals are 100 m apart; 
then it requires a density as high as 7.6 per km2 for the number of encounters to exceed 
gas-model predictions by 10%. But clearly the ideal gas model would be inadequate at the 
densities of ants in a nest, for instance. For example Gordon et al. (1993) studied 
encounter rates in ants kept at densities up to 0.72 per cm2. Even were detection distance 
as small as 0.6 cm (the length of these ants), the expected number of encounters is 40% 
more than predicted by the ideal gas model.  
 However, ant encounters are often of interest because they enable the transfer of 
information (Adler & Gordon, 1992). In this context what matters are contacts between 
individuals that have not recently met one another. At high densities our simulations 
demonstrate that the rate of novel contacts is decreased by each individual becoming 
“boxed in” by neighbours (Fig. 6B). 
 
(4) Other forms of non-independence 

In nature individuals are often aggregated and even simple predators consequently adjust 
their foraging paths to tend to remain within prey aggregations (area-restricted search). 
Encounters with prey may stimulate adjustments of turning angles, speed or both. This 
kind of non-independence invalidates the ideal gas model; for instance we no longer 
expect a linear relationship between density and encounter rate (e.g. Travis & Palmer, 
2005). The ideal gas model is most useful in such situations as a null model of 
independent movement against which to compare the improvements in encounter rate 
achieved by more sophisticated behaviours. The tendency for seabirds either to follow 
ships or to turn away from them at distances greater than observers can identify them also 
invalidates the ideal gas model, which creates problems in calculating densities from ship-
based counts. 
 
 
V. CORRECTIONS OF SOME ERRORS IN THE LITERATURE 
 
The papers that have made the errors considered below have often also identified novel 
situations to which the ideal gas model can be applied. It is thus worthwhile not only to 
point out the mistakes, and to quantify how much they matter, but to show how they might 
be corrected. 
 
(1) Encounter duration 

Waser (1984, 1987) calculated the expected duration of an encounter under the 
assumptions of the ideal gas model. This provided a null hypothesis against which to 
compare observed durations, to test whether avoidance or other interaction occurred. He 
calculated the probability distribution of the relative speeds between random pairs of 
particles and then integrated the product of probability and the reciprocal of relative speed. 
What Waser neglected was that encounters occur more often when relative speeds are 
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high. As we saw in Section II(2), the correct calculation is to divide D2 by encounter 
rate. In the case of Maxwell-Boltzmann distributions of speeds, the correct formula is 

 D/(2 22 vu  ). (25) 
Waser’s formula overestimates this by a factor of /2 ~ 1.57, which neatly explains why 
Waser’s (1984) predictions exceeded his observations by about this factor. Other papers 
involving this error are Cords (1987), Mitani et al. (1991), Holenweg et al. (1996) and van 
Schaik (1999), although the error is insufficient to have changed their qualitative 
conclusions. Whitesides (1989) also followed Waser (1984) in using the wrong formula, 
but relied more on the results of a simulation which were immune to the error (he 
observed, but did not follow up, the discrepancy between the two methods of prediction). 
 Calculations of the proportion of time spent in contact with others that rely on 
multiplying encounter frequency by Waser’s formula for encounter duration are also 
overestimates by the same factor of 1.57 (Waser, 1987; Whitesides, 1989; Mitani et al., 
1991; Holenweg et al., 1996). 
 
(2) D for spread-out groups 

Waser (1976) realized that the ideal gas model might usefully be extended to encounters 
between social groups, but unfortunately introduced an error into the literature. If the 
diameter of each group is s, and the maximum detection distance between individuals is d, 
peripheral members of the groups may detect each other when the group centres are d + s 
apart; this corresponds to D in our equations (Fig. 7). However, instead of the 2(d + s) that 
should have appeared in his encounter-rate equation, Waser (1976) wrote 2d + s. His later 
papers applying the same technique (Waser, 1982, 1984, 1987) did not repeat the error, 
but it has propagated in several doctoral theses (Bennett, 1984; Hill, 1991; Ham, 1994; see 
also Schülke & Kappeler, 2003). Also, a review paper by Dunbar (2002) erroneously 
implies that D should be taken as the distance between the edges of the groups (d), 
ignoring group diameter. 
 Barrett & Lowen (1998) were the first to point out that the 2d + s term used by Waser 
(1976) was wrong. Unfortunately they corrected the encounter-rate formula to 
4v(s + d)/; this needs to be multiplied by a factor of 2. 
 
(3) Partial overlap of home ranges 

Barrett & Lowen (1998), following van Schaik, van Amerongen & Mouton (1985), noted 
that the ideal gas approach might introduce errors when home range overlap between 
neighbouring individuals (or, in this case, primate social groups) is not complete. They 
therefore introduced a further factor x into the encounter-rate formula, which represents 
the proportion of the group’s time spent in the part of their range shared with other groups. 
They made the additional assumption that the group spent half as much time in the shared 
part as expected on the basis of its area, because resources there were depleted by their 
neighbours. However, this and similar analyses (e.g. Kinnaird & O’Brien, 2000) are 
subject to several pitfalls. 
 There is a typographical error in the equation Barrett & Lowen (1998) printed to 
make their intended adjustment. Their equation A7 should read x = (c/2)/(b + c/2) which 
indeed yields the x value that they report. More fundamental a mistake is that multiplying 
by x fails to take into account that the neighbours, like the focal group, will spend only 
some of their time in the shared area. Kinnaird & O’Brien (2000), in a similar analysis, 
apparently realised that it was the probability of groups being simultaneously in the shared 
area that mattered, but did not allow for the increased density when this occurs. 
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  For simplicity suppose that suitable habitat is distributed along a narrow strip 1 unit 
wide and that a large number N of groups are spaced evenly along the strip (Fig. 8A). If 
the strip is N units long, the density is one group per unit area, but we specify that each 
group occupies a range of length and area h, resulting in each group sharing a strip of 
width and area h – 1 with each neighbour. If density is not unity, the results derived below 
still hold if h is defined as area of home range  density (i.e. as actual home range area 
divided by the area if home ranges were reduced to cover the region without overlapping). 
 The proportion of time that each group spends in each of its shared areas is (h – 1)/h 
if it visits all parts of its range equally often. The probability that both the focal group and 
the neighbour are in their shared area is (h – 1)2/h2. When that happens the density of the 
neighbour within the shared area is one per h – 1 of area, = 1/(h – 1). Note that to calculate 
encounter rate of a focal group requires local density to be calculated ignoring the focal 
group itself (cf. Jolly et al., 1993). So the predicted rate of encounter between two 
particular neighbours = [(h – 1)2/ h2]  1/(h – 1) = (h – 1)/h2 times that given by the usual 
encounter-rate formula. (Unfortunately, even this correction factor is an underestimate, 
especially with large D, because the centre of one group can be just outside the area of 
shared use, but still lie within distance D of a neighbouring group whose centre is within 
it.) Because each group has neighbours on either side, the rate must be doubled to give a 
group’s overall rate of encounter: 
 2(h – 1)/h2. (26) 
This lies between 0 and 0.5 if no area is to be shared by more than two groups. If we 
instead assume that groups visit shared resources half as frequently as resources in their 
unshared home range centre, the correction factor becomes 
 (h – 1)/2 (27) 
[whereas Barrett & Lowen’s (1998) correction factor of x corresponds to h – 1; it happens 
that this error cancels out their earlier error pointed out in Section V(2)]. 
 These formulae still hold if the area of overlap with each neighbour varies and 
regardless of the number of neighbours with which each group shares its home range, but 
only so long as every group still has an equal sized home range, with the same proportion 
of it shared, and there are no areas shared by three or more individuals (Fig. 8B, C); these 
seem reasonable rough approximations for many systems. Fig. 8D illustrates a 
configuration in which some areas are shared by four groups; the correction factor, 
assuming that each group utilises all parts of its range equally, is then increased to 4(h –
 1)(2h – 1)/h2, which gets as high as 0.76 when h = 2. 
 Thus when home ranges do not overlap completely, expected rates of encounter will 
be decreased by an amount that depends not only on how much home ranges overlap, and 
on relative usage of those areas of overlap, but also on some aspects of overlap 
configuration. Where the geometry of home range overlap is more complex, the 
investigator will need information on the ranges of neighbours as well as that of the focal 
group, and accurate null predictions will require simulation. 
 
(4) Infanticide rate 

The issue of how to correct for overlapping home ranges also arises in a model of 
infanticide in the great apes (Harcourt & Greenberg, 2001), but it is exacerbated by further 
complications that we now discuss. To predict the probability of infanticide, Harcourt & 
Greenberg (2001) used the ideal gas model to calculate both the proportion of males that 
would not meet a female when she was in oestrus, and the proportion that would meet her 
later when she was nursing (only males that do not mate with a female but do encounter 
her while nursing are assumed to kill infants). They took the product of these proportions 
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to calculate the probability of an infanticide: their formula is of the form exp(–2wDρtc)  
(1 – exp(–2wDρtn)), where w is the mean relative speed, D is the distance at which a male 
would detect a female, ρ is the male density, and tc and tn the periods of oestrus and 
nursing respectively (here we have corrected the omission of a factor 2 in the encounter-
rate formula). 
 Unfortunately, their formula becomes inappropriate when more than a single male is 
present in the female’s range. To understand why, consider the situation when the time 
spent nursing is very long (as with the great apes), so that exp(–2wDρtn) ~ 0 and Harcourt 
& Greenberg’s (2001) formula reduces to exp(–2wDρtc). This is the probability of no 
encounters with any of the males during oestrus. But all it takes for an infanticide is for 
one male not to have met the female: it is unnecessary for all not to have met her. The 
greatest danger are males who rarely encounter the female, those whose home ranges 
overlap the female’s range only a little. It should now be apparent why it becomes 
necessary to consider range overlaps with each male individually. The probability that 
each male commits infanticide can be calculated as Harcourt & Greenberg (2001) did, but 
then one must calculate the product of the probabilities that each male does not do so to 
give the overall probability of no infanticide. The correct formula for the probability of 
infanticide is thus of the form 

 1 – 


M

i 1

[1 – exp(–2wDρitc)  (1 – exp(–2wDρitn)]. (28) 

Here M is the number of males with ranges overlapping a female’s home range and is 
usually greater than obtained by multiplying male density by the area of female home 
range [the apparent basis of Harcourt & Greenberg’s (2001) calculation]. Crucially, now ρi 
is not male density ρ, but a quantity reflecting pairwise male-female range overlap as well 
as density. 
 To illustrate this, we use Harcourt & Greenberg’s (2001) parameters for the Virunga 
gorilla (Gorilla gorilla), under the fictional supposition that females were solitary. Home 
range = 7.5 km2 and adult male density = 0.25 km–2, so h = 7.5  0.25 = 1.875. Let us 
suppose that the topology of male home ranges is like Fig. 8C, and that the female’s home 
range exactly matches the male home range marked with spots. For that home range ρi = 
1/7.5 km–2. For each of the four other overlapping male home ranges ρi = ρ(h – 1)/(2h2) = 
0.031 km–2 [derived similarly to formulae in Section V(3)]. The probability of infanticide 
is then 1 – [1 – exp(–2  0.71  0.5  0.133  6.25)]  [1 – exp(–
2  0.71  0.5  0.031  6.25)]4 = 1 – 0.45  0.134 = 0.9999. This is much higher than 
Harcourt & Greenberg’s (2001) value. But note that the value would differ were the 
female home range to be superimposed differently on the male home ranges or if the 
males had a different configuration of home ranges; much more information has to be 
specified for a reliable prediction, particularly about males that enter the female’s home 
range only occasionally. One complication not covered by the formula is that, if during the 
few days of her oestrous the female is in the corner of her home range where she is liable 
to encounter one male, she is unlikely to wander into all the other corners where she could 
meet the other males whose home ranges overlap hers only slightly. This, as well as the 
typical tendency to spend disproportionately less time in non-exclusive peripheral parts of 
the range, will tend to increase further the probability of infanticide. 
 
(5) Mating benefits of an increased home range 

There is another problem with Harcourt & Greenberg’s (2001) study, and indeed with our 
corrected formula. It arises also in several papers using the ideal gas model to examine 
whether males, rather than being monogamous, would profit from defending an enlarged 
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home range containing the home ranges of several females (van Schaik & Dunbar, 1990; 
Dunbar, 1995, 2000). What is critical in these latter papers is the number of different 
fertile females that a polygamous male would encounter. This was estimated as n(1 – e–m), 
where n is the number of females in the male’s territory and m is the expected number of 
encounters with each female within three fertile periods, as calculated from the ideal gas 
model. However, with non-straight trajectories the number of encounters is not Poisson 
distributed; therefore e–m (from the Poisson distribution) accurately estimates how often no 
encounters occur only if m equals the mean number of different individuals encountered, 
not the mean number of encounters. The predicted advantage in being polygamous is 
potentially much diminished. 
 To gauge the magnitude of the error, we consider a correlated random walk consisting 
of straight-line steps each lasting 30 min and turning angles described by a von Mises 
distribution with κ = 0.69, which is based on observed movements of grey-cheeked 
mangabey groups analysed in Section VII. We combine this with one set of van Schaik & 
Dunbar’s (1990) figures for the gibbon Hylobates lar: speed = 0.108 km h–1, detection 
distance = 25 m, density of a particular female within the enlarged male territory = 0.75 
km–2, and a female is fertile for three consecutive days ( = 72 steps of our random walk). 
Simulations predict that the male would encounter a mean of 1.00 different females, 
compared with 1.52 total encounters, so the probability of not meeting a particular female 
in his territory is (1 – e–1.00) = 0.63. If, following van Schaik & Dunbar (1990), we allow 
three cycles for a successful copulation, the probability of fertilizing a particular female is 
1 – 0.633 = 0.75. If a mean of 4.5 females remained within a male’s territory, the expected 
number of females that he fertilizes is 0.75  4.5 = 3.3 (assuming that, if females are 
territorial, they do not all become fertile at the same time, so that encountering one fertile 
female does not mean that the male is less likely to encounter another). The original 
prediction was 4.5 (all females mated); the corrected estimate remains greater than the 1 
expected under monogamy, but remember that we used an estimate for the convolution of 
the path based on a quite different species. 
 Note also that van Schaik & Dunbar (1990), as well as Dunbar (1988, p. 309; 1995; 
2000), apply the version of the ideal gas model appropriate for interactions between 
moving and stationary individuals to situations where all individuals are moving, thus 
underestimating encounter rate by a factor of at least 4/π = 1.27. 
 
(6) Spiral trajectories of sperm 

Errors in application of the ideal gas model are not confined to primatology; here is an 
example from work on fertilization kinetics. Usually sperm are so small relative to the egg 
that the critical distance D is set simply as the radius of the egg re. The term πD2 term in 
the three-dimensional encounter-rate formula is thus πre

2, which equals the cross-sectional 
area of the egg. However, Farley (2002) pointed out that sperm trajectories are typically 
helical, so that it is reasonable to consider the sperm as having a diameter that of the 
outside of the helix (with a correspondingly slower forward speed). In that case D should 
be set as the radius of the egg plus the radius of the helix (rs), and πD2 becomes π(re + rs)

2. 
Instead Farley used π(re

2 + rs
2), believing mistakenly that adding the cross-sectional areas 

of the egg and the helix was the appropriate procedure; his predictions of initial encounter 
rate should be 1.5–1.8 higher. 
 The corrected predictions turn out to exceed observed encounter rates. One potential 
reason is that the revised formula calculates the volume of a cylinder of radius re + rs, 
whereas the real probability of encounter is given by the volume of a helix fitting exactly 
within this cylinder but not fully filling it; the helix is constructed by dragging a sphere of 



19 

radius re along the sperm’s trajectory relative to the egg. Because the egg is stationary, this 
relative trajectory is a regular helix and thus the volume is feasible to calculate. Sperm 
stop moving after encountering an egg, so the relevant volume should be calculated by 
counting volumes of overlap between consecutive turns of the helix once only. With the 
parameter values of this example, the volume turns out to be exceedingly close to that of 
the enclosing cylinder. So the revised version of Farley’s (2002) calculation is an excellent 
approximation and other explanations must be sought for the disagreement with 
experiment. If we had assumed that the sperm’s track was straight instead of helical, the 
volume, and the predicted rate of encounter, would have been a factor of 3.3–4.7 too high. 
We recommend trying an analogous treatment of the wide sinusoidal sweeping 
movements of the heads of some predatory fish (Rosenthal & Hempel, 1970). 
 
(7) Predation in the plankton 

An example from this latter field concerns rates at which jellyfish (Aurelia aurita) capture 
herring larvae (Clupea harengus). To replace the assumption that the herring are points or 
spheres, Bailey & Batty (1983) supposed that they were lines of length L. The detection 
distance between the centre of the jellyfish (taken as a sphere of radius rj) and the centre of 
the herring then depends on the orientation of the herring relative to its direction of 
movement towards the jellyfish. Bailey & Batty (1983) used an incorrect formula for this, 
but more fundamentally they overlooked that—because the absolute velocity of the 
herring is oriented along its body, and the absolute velocity affects the orientation of the 
relative velocity—the herring tends to be oriented close to the direction of the relative 
velocity. The correct formula for encounter rate is 
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where  is the angle between the absolute velocities of herring and jellyfish, and u and v 
are their respective speeds (see Fig. 9 for derivation). Over the size range of jellyfish 
considered, Bailey & Batty’s (1983) formula overestimates the correct predictions of 
encounter rate by factors of 1.17–1.55; the corrected predictions worsen the fit to their 
observed rates of predation in the laboratory. Unfortunately the incorrect formula has been 
used by a number of other authors (e.g. Cowan & Houde, 1992; Letcher et al., 1996). 
Incidentally, it is easy to make the model a little more realistic by replacing the line with a 
cylinder of radius rh and length L capped with hemispheres (so total length = L + 2rh). 
Then simply replace rj in (29) with rj + rh. 
 Several papers copying the erroneous formula use it to assess how predation affects 
the size-distribution of fish larvae. Paradis, Pépin & Pepin (1999) and Paradis & Pepin 
(2001) considered a cohort of larvae that as they grow are predated by predators of a range 
of sizes. For each predator species they apparently used its modal size to calculate the 
probability of N encounters with a prey of each size. They then randomly selected one 
predator size from a truncated normal distribution (± c. 2 S.D.) about this mode, and the 
ratio of prey to predator sizes was used to calculate the probability that each encounter led 
to predation. The potential problem is with the use of the mean predator size to calculate 
the number of encounters. Predators of above-average size are disproportionately likely to 
encounter a prey item, and their encounter rate is affected by prey size to a different 
degree. We assessed how important this was by using the parameter values of Paradis et 
al. (1999) but considering predation only by crustaceans (115 per m3). Our recalculations 
dividing the predator population into multiple size classes increase mortality over the first 
day from 2.8% to 5.0%, but the difference diminishes as the prey grow larger than their 
predators, so mortality after 30 days increases only from 60% to 75%. (We failed to 
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resolve the discrepancy between the 60% figure and the considerably lower mortality 
levels calculated by Paradis et al., 1999) Reassuringly, the recalculations turn out scarcely 
to alter the size distribution of survivors. Repeating the recalculations using our corrected 
version of Bailey & Batty’s (1983) formula decreases mortality to 48% (3.8% on the first 
day), and results in a larger mean size of survivors, but by only a third of a daily growth 
increment. 
 
(8) Estimating seabird densities from ship- and aircraft-based counts 

Gaston & Smith (1984) and Gaston, Collins & Diamond (1987) sought to quantify the 
error in estimates of seabird density derived from counts of individuals flying within a 
prespecified distance of a ship or aircraft. In particular they examined the effect of the 
direction in which birds were flying relative to the path of the observer. The effect has two 
components, both of which Gaston & Smith (1984) and Gaston et al. (1987) 
miscalculated. One component is the increased relative speed when observer and birds are 
travelling in opposite directions [see Section III(4)]. An additional effect occurs if the area 
monitored is not circular. Gaston & Smith (1984) considered a rectangular area aligned 
with the observer’s absolute direction of movement (Fig. 10); let the width be 2D and the 
length a. Consider the bird as the focal individual and the ship as laying down a strip 
along its trajectory relative to the focal individual. The width of this strip depends on the 
direction between the relative trajectory and the absolute trajectory, which depends on the 
angle between the absolute trajectories of ship and bird (θ), and on their speeds (u and v 
respectively): 

  )cos/()sin((tan)/2(tansin)4( 1122 θvuθvaDaD   . (30) 

This must be multiplied by the relative speed to generate the expected rate of encounter 
divided by bird density. 
 Different shapes of area monitored require different calculations. The algebra for the 
case of an ellipse aligned along the direction of movement turns out particularly neatly: 
the rate of encounter is 

 222 )cos()sin(ρ2 θvubθav   (31) 

(where u, v and θ are as above, ρ is target density, the ellipse has length 2a along the 
direction of movement and width 2b perpendicular to it). An ellipse seems an appropriate 
way to model the greater sensitivity of many organisms in a forward direction (the algebra 
is unchanged if the observer is positioned behind the ellipse centre). However, if the field 
of sensitivity is not circular the rate of encounter increases whenever the observer changes 
direction (or even turns its head), so the method may not be readily applicable. See 
Skellam (1958) for a discussion of this point. 
 One relevant situation largely avoiding this rotation issue is of a primatologist or 
ornithologist conducting a census along a path through thick vegetation. The area 
effectively monitored may then often be keyhole shaped: a long narrow rectangular area of 
clear visibility along the path in front, combined with a circular area centred on the 
observer. One approximation to modelling this would be to calculate the number of 
encounters at the periphery of the circular area (by the standard formula) and then to add 
the number of encounters expected for the rectangular area sticking out beyond this circle 
(calculated by the formula developed in Fig. 10). Animals first crossing the rectangular 
area and then the circular one would be counted twice by such a calculation, but they 
might also often be in the field (except for those that remained in view on the path). 
 If the path were narrow and the animals small, one might reasonably consider the 
region monitored as one dimensional, setting D to 0 in the formula derived from Fig. 10. 
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The expected number of animals crossing the path ahead within a distance a of the 
observer is then 
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0
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Note that this is independent of the speed of the observer. The same formula is also 
applicable to counts of seabirds crossing the bows of a ship within a specified distance in 
front (assuming a uniform distribution of their directions of flight, and that the ship is not 
turning). 
 Another procedure when estimating seabird densities is to count only birds on one 
side of the ship, so that the area monitored is half a circle. In that case it makes the 
calculations much simpler to count only birds entering the area across the curved side (i.e. 
ignoring those entering the semicircle from the other side of the ship); the expected 
number is then simply half that if one were looking round the full 360° (assuming a 
uniform distribution of directions, but otherwise the side of the ship monitored could be 
alternated). 
 
 
VI. HOW TO TEST THE PREDICTIONS? 
 
In most of the earlier work that tested whether the ideal gas model adequately described 
animal behaviour, conclusions were based only on whether the predicted and observed 
number of contacts seemed to differ substantially. More rigorous statistical tests might be 
based on three different approaches. 
 One approach relies on the assumption that the number of encounters is Poisson 
distributed, which we know not to be exactly true unless the trajectories are straight, but 
which is a reasonable approximation in particular cases. Non-straight trajectories increase 
the variance in the number of encounters, so assuming the Poisson distribution will reject 
the null hypothesis too often. When the predicted number of encounters  is small, 
confidence limits are calculated from the usual formula for a Poisson distribution: 

 probability of  i encounters = .
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When  is larger it will be necessary to approximate this by a normal distribution with 
variance . 
 The second approach, originally suggested by Skellam (1958), is to make several 
independent observations of encounter rate and then make use of the variance in these 
observations, allowing a t-test to compare the mean of these observations with the 
prediction. The distribution of the observations can be more skewed than a Poisson 
distribution (Fig. 5A), but, as a result of the central-limit theorem, the distribution of the 
mean of m observations should usually be well approximated by a t-distribution. A square-
root transformation will tend to improve the approximation, especially when the number 
of encounters is small. The advantage of the t-test approach is that we need not know 
whether the individuals are taking straight or convoluted paths—the predicted number of 
encounters is unaffected, and the test does not rely on assumptions of a Poisson 
distribution. Note, however, that the assumption of independent observations is violated if 
we use consecutive periods of observation on the same animal or use simultaneous 
observations of neighbouring animals. The latter is a problem with the statistical test of 
Mitani et al. (1991), which treats the encounter rates of each of a group of neighbouring 
orang-utan with the others as independent, but not with that of Schülke & Kappeler 
(2003), which is based on encounter rates only within different male-female pairs. Note 
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also that the use of a χ2 test to compare observed and predicted number of encounters 
(Jolly et al., 1993; Gursky, 2005) is inappropriate. 
 Simulation provides a third way to test predictions about encounter rate. We advocate 
building tailored simulation models based on the movement patterns of the species of 
interest. The proportion of simulation runs in which the number of encounters is equal to 
or more extreme than the number observed provides directly a one-tailed p-value, which 
can be doubled to provide a two-tailed value (Manly, 1997, p. 72). Or the quantiles of the 
distribution of encounter number may be used as confidence intervals. 
 A simulation is easier to write and faster to execute if we assume that trajectories are 
composed of straight-line steps and that the changes in direction occur simultaneously in 
all individuals. This may affect the best way to gather data: for instance Waser’s (1976) 
recording of the position of mangabey groups every half hour produces data that can be 
put directly into such a model. By contrast, Barrett & Lowen (1998) recorded time and 
position whenever the group moved more than 10 m, which gives a more accurate 
description of the trajectory but is more complicated to incorporate in a simulation. 
 The simulation will select step lengths and turning angles at random from the 
observed distributions; there is little computational cost to incorporating any observed 
correlations between these variables, or any autocorrelation. Such modifications will not 
alter the mean number of encounters from that predicted by the ideal gas model, but will 
broaden the confidence limits. Hence, if our first approach of relying on the Poisson 
distribution already fails to reject the null hypothesis, there would be no need to develop 
such a simulation. However, at some greater cost in computational time one might 
incorporate further details of the biology as part of the null hypothesis, and these may 
affect predicted encounter rate. 
  Restricted home ranges are one important violation of the assumptions of the ideal 
gas model. The simple analytic model in Section V(3) showed that the extent of home 
range overlap affects encounter rate considerably. Two ways to set up home ranges in a 
simulation are to restrict movements to an area defined by the observed home ranges or to 
engineer a biased random walk in which the directions of movement are increasingly 
likely to lead back towards a central point the further away the animals drift. Either could 
be biologically reasonable, and both could be incorporated in the same model. The choice 
does matter because it affects whether peripheral zones of a home range, which are likely 
places for encounters, are less frequently visited than elsewhere. Other possibilities that 
could be readily incorporated into a simulation model are a tendency to visit a shared area 
less frequently because of the greater competition for food there, or a tendency to spend 
more time patrolling the edge of an exclusive territory. 
  The more such biological details that are incorporated into a model the more 
confidence one might have that any disagreement of observations and prediction is due to 
interactions with other individuals, rather than to other unconsidered complexities of the 
movement patterns. One might even then incorporate hypothesised responses to nearby 
individuals to test whether these are sufficient to explain the discrepancies. However, it is 
unlikely that the information for a full model will be available for anything but a 
laboratory system. Such factors as difficulty of moving through scrub may dominate an 
animal’s choice of path, yet be hard to incorporate into a model. 
 One appealing alternative to simulating tracks is to use real tracks made by animals in 
the same locality. The idea is that animals following two sets of tracks made at different 
times cannot have responded to each other, and thus the number of fictional encounters 
between them provides a prediction under the null hypothesis of no interaction. This is a 
randomization procedure (Manly, 1997). The two sets of tracks might even be from the 
same animal at different times, an approach taken below in our worked example. The time 
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separation should be sufficient that the animal could have moved anywhere else in its 
range within that time, and ideally should be long enough to preclude indirect interactions 
through scent marking or local food depletion. In species in which individuals set up 
stable territories that largely avoid the territories of others, the procedure cannot exclude 
these long-term interactions from the null hypothesis, unless the habitat is sufficiently 
uniform that it would be reasonable to shift tracks in space as well as time. However, it 
may often be a strength of the approach to be able to test whether unexpectedly more or 
fewer encounters occur between particular neighbours given their observed home ranges. 
This is the approach of Doncaster (1990) who compared the observed separation distances 
of neighbouring foxes with those generated by taking distances between random points 
(i.e. times) on their two tracks. 
 
 
VII. AN EXAMPLE: GREY-CHEEKED MANGABEY INTERGROUP 
ENCOUNTERS REANALYSED 
 
We have discussed a variety of ways to predict the number of encounters and to test 
whether the observed number differs statistically from the prediction. Here we illustrate 
some of these approaches using data on grey-cheeked mangabeys (Cercocebus albigena) 
in Kibale Forest, Uganda (Waser, 1976). The location of the centre of a focal group was 
recorded every 30 min, typically for 9–12 h each day, for a block of 10 days each month, 
over a total of 12 months. We use Waser’s original estimates of a density of 0.25 groups 
km–2, and a group diameter of 90 m. Waser observed four encounters within 200 m, and 
11 within 500 m. These encounters, rather than having already started when observations 
began, all started during the course of the day. 
 The total period of observation was 1130.5 h, during which time the group moved 
133.5 km. The simplest version of the ideal gas model thus predicts 
(4/π) × 0.25 × 133.5 × 2(0.2 + 0.09) = 24.6 encounters within 200 m and 50.1 encounters 
within 500 m (Table 1). 
 However, the distance moved in each half-hour (i.e. speed) varied considerably. If we 
assume a Maxwell-Boltzmann distribution of speeds, the predictions increase by a factor 
of 1.11. But the Maxwell-Boltzmann distribution is not a particularly close fit to the 
observed speed distribution. Instead a x0.3 transformation produces a reasonable fit to a 
normal distribution. If we truncate this at the observed minimum and maximum and 
integrate numerically, the mean relative speed increases further from 1.41 to 1.53 times 
the mean speed, predicting correspondingly more encounters (Table 1). 
 An alternative to fitting a distribution and integrating is systematically to pair all 
observed step lengths (including with themselves), and calculate the mean relative speed 
for each pair by integrating (numerically or using elliptic functions) over all possible 
angles between them: 

  
π

0

22 π/θdθcos2 jiji xxxx . (34) 

The mean over all possible pairs is 1.54 times the mean speed, very close to the figure 
using the transformed normal distribution. 
 A closer look at the distribution of step lengths shows that there is no systematic 
variation during most of the day, but that the mean is lower in the last two evening 
periods, because sometimes the group had already settled down for the night. We repeated 
the systematic pairing of all step lengths, but this time pairing step lengths recorded at 
each of the latest two times of day only with others recorded at the same time. In this 
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example this refinement made very little difference. 
 These calculations have all assumed that groups do not have home ranges. In fact the 
mangabey group had a roughly rectangular home range, bounded on its east and west sides 
by unsuitable habitat. Very roughly, a central area of 0.3 the length of the rectangle was 
used exclusively by this group and each of the ends was overlapped by the home range of 
another group. If we assume that usage over the home range was even and that the areas of 
overlap occupied a similar proportion of each neighbour’s home range, then we can use 
formula (27) to revise our prediction of encounter rate: 2(h – 1)/h2, where h = 1/(0.3 + 
0.35), implies a correction factor of 0.46, considerably reducing the predicted number of 
encounters (Table 1). A better prediction would incorporate the observed proportions of 
time that the focal group spent in the two areas of overlap: they were 0.30 and 0.37. If we 
continue to assume that each neighbouring group spent the same proportion of its time in 
each area of overlap as did the focal group, the probability of being in an area of overlap at 
the same time as that neighbour is now (0.302 + 0.372), compared with the earlier 
calculation of 2  0.352. This slightly reduces the correction factor to 0.42. 
 Now we consider how to test whether the observed number of encounters differs 
significantly from these predictions, which requires estimating the variance in the number 
of encounters. We first illustrate the second of our three proposed approaches, using the 
observed variation from month to month. There were too few encounters within 200 m to 
provide a reliable estimate of the variance. With the 500 m detection distance, there were 
5 months of 0 encounters, 4 months of 1 encounter, 2 of 2, and 1 of 3. Very different 
distances were moved in some months, in large part due to differing lengths of 
observation; therefore we computed mean rate of encounter each month. A square-root 
transformation served to make the distribution more normally distributed. The standard 
error of the mean was multiplied by the 95% confidence limit for the t11 distribution, 
added and subtracted from the mean, and back-transformed to generate confidence limits 
of 2–18 encounters over the 2261 half-hours of observation. So predictions outside this 
range should be judged as differing significantly from observations. 
 The other approaches to statistical testing estimate the variance from the model rather 
than the data. Assuming a Poisson distribution of encounters and a mean number of 
encounters of 29.7 or 60.5, yields 95% confidence limits of 21–38 and 48–73 for 
encounters at 200 and 500 m respectively (Table 1). 
 Unfortunately it is not appropriate to assume a Poisson distribution for the model 
involving overlap of home ranges; if an animal is in an exclusive part of its home range, 
for instance, it is likely to remain so for some time, increasing the variance in encounter 
rate. In any case the Poisson distribution will underestimate the variance because 
trajectories are not straight. Our third approach, based on simulating a more detailed 
model of movements allows a more valid estimate of variance for non-straight trajectories 
(but here we assume panmixis rather than modelling the overlapping home ranges). We 
chose to sample randomly from the observed step lengths and changes of angle (rather 
than sampling from fitted distributions). There was no need to incorporate a correlation 
between these because it scarcely existed in our data. Our model also matched the 
structure of the observations. Observations were made in blocks of typically 10 days, and 
since blocks were separated by typically 20 days, our model took a new random starting 
configuration each block. Otherwise, the initial location each day was taken as the same as 
the night before, but the initial direction was chosen at random. Our model matched the 
pattern of observation periods exactly, so that some blocks had more days than others. 
Similarly, although the random walk continued for 23 steps each day, on some days there 
were periods when data had not been recorded and accordingly any encounters in our 
model at the corresponding times were ignored. Using this approach, the 95% confidence 
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limits for the number of encounters were much wider than the Poisson-generated limits 
(Table 1). 
 The simulation also allowed us to investigate one source of observer bias. Two 
groups that encounter each other may shortly afterwards re-encounter each other, but 
observers might easily not realise that there was a period when the groups were apart. We 
could set our simulation to ignore re-encounters starting within some period from the end 
of earlier encounters between the same groups. Setting this period to 1 h reduced the 
predicted number of 200 m encounters from 29.7 to 19.7; setting it to 4 h reduced it 
further to 14.1 (Table 1). 
 In theory the random walk could be further modified to make it more realistic. One 
modification that had almost no effect on the confidence limits was to incorporate the 
observed autocorrelation between successive step lengths and turning angles. However, 
that version was based on a first-order Markov process (i.e. only the immediately 
preceding step influences the next; Root & Kareiva, 1984), not on consistencies in step 
lengths and directionality persisting over several hours. In reality the group tended to 
spend several days in succession feeding on the same fruiting tree in the morning and 
exploring away from it later in the day, whereas on other days it moved more directionally 
to locate a new source of fruit (Waser, 1977a). Simulating this would require much 
information on fruiting patterns and foraging behaviour. An easier modification to our 
simulation would be to simulate just the three neighbouring groups observed, restricting 
each to their observed home ranges. 
 We also tried the approach of counting intercepts with the group’s own trajectory in 
other months (so separated by ≥ 14 days, enough for the group to traverse its home range). 
This null model’s strength is incorporating any consistent tendency to avoid regions, 
perhaps of unsuitable habitat, within a home range. For the most southerly 0.35 of the 
home range, we selected steps starting within this region, then systematically paired all 
such steps from different months, and found that 0.0239 of these pairings would have 
involved a 200 m encounter. The focal group was in that region 0.30 of the time, and so 
we assume (as above) that it and its neighbour were there simultaneously 0.302 of the 
time. A total of 2261 half-hour steps were observed, so we predict 2261  0.0239  0.302 
encounters in the southern area of overlap, plus 2261  0.0358  0.372 in the northern area 
of overlap, summing to 16.0 encounters. This figure and the corresponding prediction for 
encounters within 500 m are comparable with the predictions from the ideal gas model 
when range overlap is incorporated (Table 1). Apparently any tendency to avoid or prefer 
particular regions within the home range is at the wrong scale, or otherwise insufficient, to 
have much effect on the rate of encounter at these distances. 
 
 
VIII. DISCUSSION 
 
Our analyses indicate that when individuals do not interact with each other the ideal gas 
model makes rather robust predictions about the number of contacts, but less robust 
predictions about the variance of this number or the number of different individuals 
contacted. In addition, the model will tend to overestimate the number of encounters 
scored if multiple contacts within a short interval are overlooked. The model must be 
modified when animals are restricted to overlapping home ranges, but encounter rates are 
still predictable if appropriate data on home-range geometry and usage have been 
collected. When individuals move away from each other on contact, the model 
underestimates encounter rate, but not by much unless density is very high. 
 Reanalysis of the data set used in an early application of the ideal gas model to the 
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investigation of grey-cheeked mangabey intergroup encounters showed that the results 
were insensitive to a variety of refinements (more realistic speed distributions, and 
allowing correlation among steps in the underlying random walk model of movement). On 
the other hand, both a more realistic incorporation of home-range overlap and filtering out 
multiple encounters over a short interval lowered the predictions considerably, and would 
do so further if these modifications were combined. Also, our simulations indicate that the 
confidence limits around predicted encounter rates are wide, making it difficult to 
demonstrate statistically significant differences from observations. The confidence limits 
would have been even wider had we allowed for some uncertainty in the parameters used, 
for instance in density or in speed of other groups. 
 This fundamental problem of wide confidence limits may mean that counting 
encounters is not the best way to test whether animals avoid or are attracted to each other; 
for instance, Waser (1976, 1977b) relied not just on the ideal gas model, but also observed 
how mangabeys responded to playbacks of neighbours’ calls. For other purposes the ideal 
gas model remains useful in providing estimates of encounter rate in a wide variety of 
biological interactions. A particular benefit of this analytic approach is that biologists are 
immediately alerted to the expected form of the relationship between speed, density or 
detection distance and the quantity of interest (not only encounter rate, but encounter 
duration, the intervals between encounters, etc.). The form of these relationships may 
indeed be what matters most when the ideal gas model is used as a component of larger 
models. However, simulations provide a way to add biologically interesting complications 
to the ideal gas model. 
 This may be a ripe time to reconsider the ideal gas model and its variants, because the 
diminishing price and size of tracking technologies (e.g. GPS data loggers and satellite 
tracking: Kenward et al., 2002) now facilitate near-continuous recording of position 
however widely the animals range. These technologies not only provide parameters for the 
model (speed distributions, home range overlaps, etc.) but, because multiple animals can 
be tracked simultaneously, they also provide a means to monitor encounters themselves. 
In this latter context, another recent technological advance is data loggers that record the 
presence of other tagged individuals in close proximity (Weihong, White & Clout, 2005). 
 In reviewing the many diverse applications of the ideal gas model, we were surprised 
by several omissions. For example, we failed to find its application among studies of 
commercial fishing. The explanation appears to be that the models used to predict fish 
capture rates are more sophisticated than the ideal gas model, taking into account the 
avoidance behaviour of the fish once they notice the approaching net, and the consequent 
greater propensity for fish further from the centre of the net to escape (Barkley, 1964; 
Laval, 1974). 
 More difficult to explain is that we found no mention of the ideal gas model in 
epidemiology, despite the acknowledged importance of contact rate in determining the 
spread and prevalence of diseases and parasites (e.g. Gompper & Wright, 2005). 
Epidemiology goes as far as borrowing the law of mass action from chemistry (that the 
rate of contact between two types of individuals is proportional to the product of their 
densities; McCallum, Barlow & Hone, 2001; Begon et al., 2002). This result is a 
prediction of the ideal gas model; what is extra in the ideal gas model itself, besides the 
value of the multiplicative constant, is the dependence of rate of contact on individual 
speeds and on the critical distance between individuals that defines a “contact”. As an 
example of the possible applicability of the ideal gas model, consider the typical finding in 
epidemiology that infection rate shows a non-linear effect of density (Fenton et al., 2002). 
In some cases this might be explained by looking at how individual behaviour depends on 
density (Dwyer & Elkinton, 1993). For instance, it might be that density affects speed of 
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movement or the degree of overlap of home ranges; application of the ideal gas model 
would then allow a revision of the relationship between contact or infection rate and 
density. The same sorts of analysis might be used to improve models of information 
spread in social animals (cf. Adler & Gordon, 1992). 
 The story described in the Introduction is of biologists repeatedly and independently 
turning to physics to find an equation for collision frequencies between moving particles. 
An interesting twist to this tale is that James Clerk Maxwell, the originator of the equation 
for collision rate in an ideal gas, was himself inspired by research on populations of 
animals (humans). In the social sciences, the statistical approach had reliably described 
such phenomena as crime rates and ages of marriage in large populations even though 
behaviour of individual humans was obviously unpredictable, which stimulated both 
Maxwell and Boltzmann to take the same statistical approach with molecules (Gigerenzer 
et al., 1989, p. 62). 
 
 
IX. CONCLUSIONS 
 
(1) The ideal gas model applies to non-interacting particles moving in randomly oriented 
straight lines. It yields a simple equation linking the number of times particles come 
within a specified distance of one another to their speed and density. The formula is 
straightforward to extend to encounters between two classes of individual differing in their 
densities and speeds. 
(2) This encounter-rate formula is quite different to that predicting how many 
neighbouring particles lie within the specified distance at a single moment of observation, 
or summed over a series of such observations. Combining the two different formulae 
allows calculation of mean duration of an encounter, which published formulae 
overestimate. 
(3) The model has been widely applied in biology to analyse rates of encounters between 
individuals (e.g. males and females, sperm and eggs, predators and prey, human observers 
and the animals that they are counting) and between groups of individuals. It has been 
used both as a null model to detect avoidance or association, and as a component of other 
models that analyse rates of events dependent on encounters. 
(4) There are different versions of the formula depending on whether movement is in two 
or three dimensions and on whether speeds are constant or follow Maxwell-Boltzmann 
distributions. Versions for other speed distributions usually require numerical integration 
to derive the multiplicative constant. This is also the case if directions of movement are 
anisotropic. 
(5) Local variation in density has a different effect on the predictions depending on 
whether it is due to individuals avoiding low-density regions or moving faster within 
them. Simple extensions of the model cover the situation when density decreases 
progressively as a result of previous encounters (e.g. predators and prey). 
(6) When individuals are restricted to home ranges that overlap, a simple correction factor 
may often be adequate, but this differs from corrections given in the literature. 
(7) If movement is not in straight lines, the formulae still hold for mean number of 
encounters, but this is no longer Poisson distributed (invalidating several published 
calculations of whether any encounter occurs in a specified time). Many encounters will 
now be re-encounters with the same individual, which field observations might well not 
distinguish. We know of no analytic formulae for predicting the number of different 
individuals encountered, although this will be Poisson distributed and proportional to 
density. 
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(8) If individuals back away from one another following contact, the encounter-rate 
formulae produce serious underestimates only at high densities, such as might be 
experienced by ants in a nest. Other forms of non-independence of movement are 
generally not tractable. 
(9) Tests of the significance of differences between model predictions and observations 
may be based on three approaches to estimating variance: (i) from a series of observations 
at different times; (ii) from the Poisson distribution (leading to too many rejections if 
paths are not straight); and (iii) from simulations based on a correlated random walk. 
(10) A reanalysis of data on encounters between groups of grey-cheeked mangabeys tends 
to support the initial conclusion that groups avoid each other, but also suggests three 
additional factors that might contribute to the low number of observed encounters relative 
to predictions from the ideal gas model: (i) restricted home-range overlap of neighbours 
compared with panmixis, (ii) the possibility of overlooking re-encounters within an hour 
of an earlier encounter, and (iii) the wide confidence intervals calculated from simulations 
of a correlated random walk. 
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Table 1. Observed and predicted numbers of encounters for a mangabey group followed 
for 2261 half-hour intervals in Kibale Forest, Uganda. We were unable to retrieve the data 
from 74 of the original 2474 data points used by Waser (1976) owing to loss or 
degradation of the IBM cards. The models are explained in the text. The last column 
indicates the basis of the confidence limits: t = t-distribution, P = Poisson distribution, s = 
simulation 
 
 Encounters < 200 m  Encounters < 500 m  
 mean 95% CL  mean 95% CL  
      
Observations 4   11 2 ≤ x ≤ 18 t 
      
Predictions of Waser (1976) 22.5   50.0   
Gas model: constant speed 24.6   50.1   
Gas model: Maxwell-Boltzmann speeds 27.4   55.7   
Gas model: observed speed distribution 29.7 21 ≤ x ≤ 38  60.5 48 ≤ x ≤ 73 P 
Ditto, + range overlap 13.5   27.5   
Ditto, + observed usage of overlap 12.5   25.5   

     
Correlated random walk simulation 29.7 8 ≤ x ≤ 59  60.6 27 ≤ x ≤ 103 s 
Ditto, > 1 h apart 19.7 5 ≤ x ≤ 39  38.9 17 ≤ x ≤ 66 s 
Ditto, > 4 h apart 14.1 4 ≤ x ≤ 27  27.3 12 ≤ x ≤ 46 s 
      
Intercept with own time-displaced trajectory 16.0   21.3   
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FIGURE CAPTIONS 
 
Fig. 1. (A) Trajectories of three individuals, each travelling at the same speed v, over a 
period t, so the length of each trajectory is vt. (B) The same trajectories as in A but viewed 
relative to the position of individual 1, which thus now appears to remain in the same spot. 
The dashed lines are the translated vectors of individuals 1 and 2 from A used to construct 
the relative trajectory of individual 2 (solid line); the length of this relative trajectory is 2vt 
sin(θ/2) (since the dashed lines form an isosceles triangle with it). (C) The areas swept out 
by the leading edge of a disc of radius D following the trajectories of individuals 2 and 3 
relative to 1. This shows that individual 1 comes within D units of individual 2 but never 
so close to individual 3. The probability of an encounter with the focal individual depends 
on the size of this swept-out area, which for individual 2 is 2D  2vt sin(θ/2). The average 
area for a randomly orientated individual (i.e. θ evenly distributed between 0 and π) is thus 


π

0

π/d /2)sin(22 θθvtD = 2D  4vt/π = 8Dvt/π. The 4vt/π term is the mean relative speed 

[CORRECTION: THIS SHOULD READ “mean relative trajectory length”].  
 
Fig. 2. Mean relative speed in three dimensions. Dashed lines show the directions of two 
individuals at an angle θ to each other; without loss of generality the focal individual is 
shown vertically orientated. The trajectory of the other individual relative to the focal 
individual (thick solid line) has length 2vt sin(θ/2), as in the two-dimensional case (Fig. 1). 
However, randomly orientated individuals now yield some values of θ more commonly 
than others: the probability of the angle lying between θ and θ + δθ is the area of a strip of 
width δθ following the dotted line on the figure, divided by the surface area of the sphere 
= 2π sin θ δθ/(4π) = sin θ δθ/2. Thus the mean length of the relative trajectory is 


π

0

dsin/2)sin( θθθvt  = 4vt/3.  

 
Fig. 3. (A) A modification of Fig. 1C to describe the situation when the number of 
occasions on which an association occurs is counted (instead of the number of new 
encounters). The expected number of associations is how many discs cover a random spot, 
and is thus the product of the area of each disc (πD2), the number of observations made (5 
in this example), and the density of individuals. Speed and direction make no difference: 
the sum of the areas occupied by the discs is the same for individual 2 (hatched) as 
individual 3 (solid shading). For small values of θ (the angle between trajectories) the 
relative trajectories are shorter so that the discs overlap (as they are also more liable to do 
if the sampling interval is short compared to the speeds); an association may then persist 
from one observation to the next and should then be counted more than once to match 
with the model. (B) The number of associations between D – δD and D + δD from a focal 
individual is given by the area of the annuli (each has area 4D δD + δD2 ~ 4D δD for 
small δD, and is thus proportional to D). (C) The number of encounters within D + δD, but 
not closer than D – δD is given by the shaded region. For long periods of observation the 
semicircles at each end are a minor component, so the area is roughly 4 δD  length of 
relative trajectory, and thus is independent of D. 
 
Fig. 4. Mean relative speed of predator and prey as a function of the mean speed of the 
predator. Encounter rate is directly proportional to mean relative speed. The mean speed 
of the prey is set to 1. The lines differ in whether movement is in two (2-D) or three (3-D) 
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dimensions, and in whether the prey and predator each have constant speed or whether this 
varies according to a Maxwell-Boltzmann (M-B) distribution. 
 
Fig. 5. Deviations from the ideal gas model with a correlated random walk. As a baseline, 
each simulation consists of 64 straight-line steps, each of 100 m, all individuals move at 
the same constant speed, detection distance D = 100 m, density ρ = 1 km–2. Turning angle 
follows a von Mises distribution with dispersion parameter κ; we transform κ to the 
percentage of times that the direction changes by less than 90º (“% steps forward”): κ = 0 
 50% forward (uncorrelated random walk), κ = 1  78% forward, κ =   100% 
forward (gas model assumption). (A) Distribution of number of encounters: thick line = 
gas model, broken line κ = 1, thin line κ = 0. (B) Ratio of variance to mean number of 
encounters, as a function of κ; solid line = baseline parameters, dashed line D = 25 m and 
ρ = 4 km-2. (C) Number of different individuals encountered as a function of κ; parameters 
as in B. (D) Number of different individuals encountered as a function of number of steps; 
other parameters as in A. Each point is based on ≥ 105 simulations. 
 
Fig. 6. Deviations from the ideal gas model when individuals rebound. Density is 
measured as individuals per unit2 and rebounds occur at a separation of 1 unit between 
centres. Speeds are constant, with individuals heading directly away after contact. At high 
densities, disks are initially arranged on a triangular lattice on a toroidal surface; 
simulation continues until collision rate has reached equilibrium. (A) Number of 
encounters relative to ideal gas model. Dashed line shows the analytically derived 
correction factor based on virial coefficients up to order 8 (van Rensburg, 1993). Solid line 
shows the factor by which collision rate in our simulations exceeded the gas-model 
prediction. The inflection is associated with the “phase change” to a crystalline form in 
which individuals are unable to slip past one another (see Luding, 2001). Each point is 
based on 20000–100000 simulations of 100 disks. (B) Number of different individuals 
encountered in a travel distance of 10 units. Solid line is from our simulations, dashed line 
is that predicted by the gas model assuming straight-line trajectories. Each point is based 
on 10000 simulations of a minimum of 100 disks. 
 
Fig. 7. If each individual can detect another d away, and they form groups of diameter s, 
then groups can detect each other when their centres are d + s apart and so this should 
replace D in the standard formulae. 
 
Fig. 8. Configurations of overlapping territories in which home range  density = h = 1.56. 
Home ranges overlapping the stippled home range are shown hatched. For configurations 
A, B and C, the correction factor assuming equal usage within a home range = 2(h – 1)/h2 
= 0.46. For configuration D, the corresponding correction factor = 4(h – 1)(2h – 1)/h2 = 
0.61. 
 
Fig. 9. Encounters between jellyfish moving at speed v at an angle θ to herring moving at 
speed u. We assume that the herring has length L but is infinitely thin. A shows this 
situation in the plane common to both movement vectors. The trajectory of the herring 
relative to the jellyfish is shown by the thick vector and has length y = 

θuvvut cos22   [CORRECTION: THIS SHOULD READ θuvvut cos222  ]. 

The parallelogram outlined by a dashed line shows those starting positions of an infinitely 
small jellyfish that would result in a new encounter within time t. The width of this 
parallelogram perpendicular to the relative trajectory is z = (Lv sin θ)/y. However, instead 
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the jellyfish are considered to be spheres with radius rj, and the three circles show 
examples of positions that result in one part of the jellyfish just touching the herring. The 
dotted outline marks the envelope of positions of the jellyfish centre that result in new 
encounters. B shows the cross section of this space cut perpendicular to the relative 
trajectory. The area of the cross section is πrj

2 + rjz. This must be multiplied by the length 
of the relative trajectory of the herring (y) to give the volume of the space: y(πrj

2 + 
(rjLv sin θ)/y) = yπrj

2 + rjLv sin θ. Calculating the expected number of encounters then 
involves integrating this over θ (see Fig. 2). 
 
Fig. 10. Calculation of the number of birds entering a rectangular area (2D  a) in front of 
a ship moving with speed u. Consider the ship’s motion relative to a bird flying with speed 
v at an angle of θ to the course of the ship. Relative to the bird the ship moves a distance 

θuvvut cos22   [CORRECTION: THIS SHOULD READ θuvvut cos222  ] in 

time t (shown as thick vector in the figure). The movement of the rectangular area along 
this relative trajectory covers a strip with sides of this length and with width 

22)2( aD  sin( + |α|), where  = tan–1(2D/a) and α = tan–1((v sin θ)/(u – v cos θ)). The 

area of the strip is the product of this width and length, and the expected number of 
encounters is this area times bird density (integrating over θ if birds are not all travelling 
in the same direction). 
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Fig. 1
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8  
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Fig. 9 
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Fig. 10 

 


