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Summary

1.

 

Barrett & Lowen (1998) and Waser (1976) attempted to explain the net monthly and
yearly displacements of Grey-Cheeked Mangabeys using observed short-term step lengths
and assuming a random walk, with and without boundaries. This paper reanalyses their data.

 

2.

 

Analytic approaches require the root-mean-square step length, not the mean.
However, a more flexible approach to making and testing predictions is Monte-Carlo
simulation. With a random walk long-term displacements have a large variance, so a
single observation is unlikely to disprove this null hypothesis.

 

3.

 

Restricting movement to a square lattice is a reasonable approximation even when
rectangular boundaries are incorporated. Describing the boundary configuration
accurately is more important.

 

4.

 

The observed non-uniformity in turning angles should have been incorporated as
it has a large effect on predicted net displacements, unless the arena is tightly con-
stricted. Randomness of movement within a day can be distinguished from that
between days. For Waser’s population it makes sense to predict long-term displace-
ments using only long-distance daily displacements.

 

5.

 

There are better approaches to establish both whether boundaries exist and
whether movements follow a random walk.
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Introduction

 

Recently Barrett & Lowen (1998) reapplied some tech-
niques earlier used by Waser (1976). Both papers tested
whether Grey-Cheeked Mangabeys, 

 

Cercocebus albigena

 

Lydeker, took a random walk through Kibale Forest
in Uganda. Waser (1976) recorded a group’s position
every half-hour, and Barrett & Lowen (1998) recorded
group position after every movement over 10 m. They
averaged the step lengths between successive positions
and used this average to predict monthly and yearly
net displacements (i.e. the straight-line distance from
start to finish, henceforth written as 

 

r

 

). Movements were
assumed to follow an unbiased and uncorrelated random
walk, defined as a sequence of straight-line steps with
directions independent of position, step length and the
directions of previous steps. In both studies observed
monthly and yearly values of 

 

r

 

 were less than predicted.
Barrett & Lowen (1998) tried to account for the

disagreement, using both their own data and Waser’s.
They still modelled movement as a random walk,
but the walk was now constrained by two parallel
boundaries corresponding to areas of  unsuitable

habitat. Later they added two boundaries perpendic-
ular to the first, corresponding to the home ranges
of  neighbouring groups. They claimed that only
with all four boundaries were observations and pre-
dictions not significantly different, and they argued from
this that neighbouring groups indeed formed barriers.

In this paper I identify some methodological weak-
nesses in this part of Barrett & Lowen’s (1998) analysis.
My primary aim is not to challenge their biological
conclusions, but to improve future testing for devi-
ations from a random walk. Random walks, and the
diffusion equations that approximate them, have been
used in biology to explain the behaviour of both whole
organisms and molecules, and they are incorporated
in models of foraging, population dynamics, disease
transmission and gene flow (e.g. Okubo 1980). Often
a random walk is the null hypothesis, whose rejec-
tion would imply more interesting phenomena (e.g. a
taxis). So it is important to test correctly whether a
random walk adequately describes behaviour.

 

The formula for root-mean-square net displacement

 

Equation 1 gives the root-mean-square (RMS) net
displacement after an unbounded random walk of 

 

N

 

steps, each of length 

 

L

 

 (Rayleigh 1880):

 

*Present address: School of Biological Sciences, University of
Bristol, Bristol BS8 1UG, UK.
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RMS of 

 

r 

 

= 

 

L

 

√

 

N

 

. eqn 1

Barrett & Lowen (1998) printed this incorrectly but
used the correct version. The formula holds in all
dimensions, whether movement is allowed in any
direction or restricted to a square lattice.

The same formula holds if  step length varies, what-
ever its distribution, but only if  

 

L

 

 is redefined as the
RMS step length (e.g. Hughes 1995, p. 75). Barrett &
Lowen (1998) put 

 

L

 

 = 82 m, but this was the mean
step length. I estimate from Barrett’s (1995) histogram
of step lengths that the RMS step length was about
98 m, making Barrett & Lowen’s predictions 16%
too low. The 60·85-m step length used by Waser (1974,
1976) is also cited as a mean; however, a histogram
of half-hourly movements published later by Waser
(1984a) has an RMS of about 61 m, so he may have
used the RMS (P. M. Waser, personal commun-
ication). Because of  this uncertainty about the dis-
tribution of step lengths, my predictions for Waser’s
mangabeys should be regarded as only illustrative.

Barrett (1995) criticized Waser (1976) for basing
his calculations on half-hourly displacements rather
than the length of distinct movements. If  each half-
hourly displacement was itself  the product of a
smaller-scale random walk, Waser’s approach is fine.
But suppose that independent straight-line move-
ments typically lasted an hour; using half-hourly dis-
placements would then divide the true 

 

L

 

 by 2 and
multiply the true 

 

N

 

 by 2, leading to an overestima-
tion of 

 

r

 

 by a factor of 

 

√

 

2 (equation 1). This would be
a special case of the directions of consecutive steps
being correlated (see below); Barrett’s approach of
recording position when the group pauses faces the
same problem if  movement tends to continue in the
same direction after a pause.

 

Methods of statistical testing

 

Barrett & Lowen (1998) did not test statistically
whether their observations fitted the predictions of
their unbounded model, and with their bounded simu-
lation models they inappropriately used Normal-deviate
values.

The distribution of 

 

r

 

 for large 

 

N

 

 has the following
probability density function (Rayleigh 1880):

eqn 2

This distribution is skewed and that of  

 

r

 

2

 

 even
more so (63% of 

 

r

 

 are below the RMS value). Con-
sequently a 

 

t

 

-test is only appropriate if  testing the
mean of several observations of 

 

r

 

, preferably using a
transformation. With fewer observations significance
levels should instead be calculated analytically from
equation 2. The cumulative density function of 

 

r

 

 is:

Probability (

 

r

 

 < 

 

R

 

) = 1 

 

−

 

 eqn 3

We can readily calculate from this the values of 

 

r

 

below which 2·5% and 97·5% of the population
should lie (the two-tailed 95% confidence limits).
This test is algebraically equivalent to looking up
observed values of 2

 

r

 

2

 

/

 

N

 

 in standard 

 

χ

 

2

 

 tables using
df = 2 (these give one-tailed probabilities). If  

 

m

 

 inde-
pendent random walks have been observed, look up

 in 

 

χ

 

2

 

 tables with df = 2

 

m

 

. Note that equations

2 and 3 hold only if  

 

N

 

 is large, or if  the distribution
of step lengths itself  follows equation 2 (often a fair
approximation – Waser 1984a).

Alternatively one can Monte-Carlo simulate a
large number of random walks, and reject the null
hypothesis if  the observation falls within the bottom
or top 2·5% of the generated values of 

 

r

 

. Manly
(1997) suggested a minimum of 1000 simulations to
establish a 5% significance level, and 5000 for the 1%
level. Simulation is the method to use for small 

 

N

 

 or
with an amended null hypothesis (e.g. boundaries
introduced). If  several values of 

 

r

 

 have been observed,
the obvious procedure is to calculate the mean of
these 

 

m

 

 observations, and amend the simulation to
generate many analogous means of  

 

m

 

 values of  

 

r

 

,
with each value of 

 

r

 

 generated by an independent
random walk. However, with Waser’s (1976) data one
month’s end point was the next’s starting point, and
Barrett & Lowen (1998) also measured monthly 

 

r

 

over consecutive months. When the model includes
boundaries, this non-independence affects the vari-
ance of the mean of the 

 

m

 

 months, and thus should
be explicitly incorporated into the simulations. Also,
in some cases considered below, it made a differ-
ence that, after choosing a random starting point, I
simulated the walk for a period before starting to
measure 

 

r

 

. (Depending on how behaviour at the
boundaries is modelled, a randomly walking animal
need not be equally likely to occur everywhere within
the boundaries.) Another advantage of simulation is
that one can test predictions of  the mean 

 

r

 

 as well
as of the RMS. A mean is closer to most observed
values of  

 

r

 

 than the RMS and both mangabey
studies quoted only the mean.

I repeated Barrett & Lowen’s (1998) analyses using
simulation to establish the significance level (Table 1).
The two-tailed 

 

P

 

-values are calculated as twice the
lesser of the one-tailed values (Manly 1997, p. 72),
and based on 10

 

5

 

 simulations. Although the observed
yearly 

 

r

 

 in Waser’s study is much lower than that
expected from an unbounded random walk (1870 m

 

vs

 

 5062 m), the difference is not nearly significant.
This reflects the skewed distribution of 

 

r

 

 and its large
variance. However, the chances of obtaining a signific-
ant result are much higher with monthly 

 

r

 

, because
this was measured for several months, allowing calcu-
lation of a mean, with a lower variance than single
observations.

It would be concluded from Table 1 that partial

p r( ) 2r
N
-----e−r2/N= .

e−R2/N.

2ri
2/Ni( )

i=1

i=m

∑
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boundaries are sufficient to explain Waser’s observa-
tions, but that full boundaries are still necessary to
explain Barrett’s observations of monthly 

 

r

 

.

 

Is a square lattice adequate?

 

Barrett & Lowen (1998) conducted their random-walk
simulations on a square lattice. When 

 

N

 

 is large and
the random walk unbounded, the distribution of 

 

r

 

 is
the same for a square lattice as for the continuous
case (Rayleigh 1880). However, for a bounded ran-
dom walk this need not be true. To see why, consider
the mangabey group positioned on a boundary lying
along one ‘street’ of the lattice. I model behaviour at
a boundary by picking another direction at random
if a step would cross the boundary. Then with the
square lattice there is a two-thirds chance that the
group remains on the boundary, whereas in the con-
tinuous case the group will move away, on average by
2/

 

π

 

 of  a step. The tendency to stick to boundaries
usually increases 

 

r

 

 (random points within a rectangle
are on average nearer than points on its periphery).

In the case of the fully bounded random walk for
Barrett’s field site (dimensions 2150 m 

 

×

 

 1050 m), the
predicted mean monthly 

 

r

 

 was 791 m (not signific-
antly different from the observed value of 714 m:

 

P 

 

= 70%). The prediction is slightly increased (806 m)
by having a constant step length of 98·09 m (the
RMS value). If  instead we model a square lattice with
this step length, the predicted mean monthly 

 

r

 

 is a
little larger still (818 m; now 

 

P 

 

= 59%). One can
specify other rules for behaviour at boundaries. If
boundaries act like idealized billiard cushions, restrict-
ing the walk to a lattice has an opposite effect on
mean monthly 

 

r

 

 (798 m 

 

vs

 

 828 m). But a square
lattice seems not to be too misleading with this
boundary configuration.

 

How much does boundary configuration matter?

 

Barrett & Lowen (1998) modelled the boundaries as
straight lines lying parallel and perpendicular – a
reasonable first step. However, details of the boundary
configuration can matter. An extreme case is a dumb-

bell shape in which a narrow corridor connects two
blocks of habitat. A random walk is unlikely to enter
this corridor, so 

 

r

 

 tends to be smaller than within a
single circle of  habitat equal in total area. Larger
values of 

 

r

 

 are expected if  the area is arranged as a
narrow strip (then the distribution of 

 

r

 

 approaches
that for an unbounded random walk).

Simulation models can readily incorporate real
boundary configurations. Barrett (1995) displayed the
range of her mangabey group over a year. Since the
number of quadrats visited had almost reached an
asymptote, I have based the boundary configuration
on this home range (smoothing the outlines slightly).
It is somewhat dumbbell shaped (350 m wide at its
narrowest, 1300 m and 950 m wide at the ends). Pre-
dicted mean monthly and yearly 

 

r

 

 are now 710 m
and 748 m. For comparison I simulated walks within
a rectangle of the same length and area (1820 m 

 

×

 

 750 m).
Unexpectedly, predicted mean monthly and yearly 

 

r

 

are then smaller (651 m and 654 m). The probable
reason is that with the rectangle the simulation’s
starting point is more likely to lie centrally than with
the dumbbell, and such starting points preclude
larger values of 

 

r

 

.

 

Analysing randomness at different temporal scales

 

Barrett & Lowen (1998) and Waser (1976) used observed
step lengths of a few tens of metres to predict both
monthly and yearly values of 

 

r

 

. Another possibility
would be to predict yearly 

 

r

 

 from the observed monthly

 

r

 

. But a month is rather an arbitrary duration, and it
seems more meaningful to use step lengths or half-
hourly displacements to predict daily 

 

r

 

, and use
observed daily 

 

r

 

 to predict monthly and yearly 

 

r

 

. It is
plausible that movements within a day do not fit a
random walk, but that monthly 

 

r

 

 is well predicted by
a random walk based on observed daily 

 

r

 

 (e.g. Jones

 

et al

 

. 1980).
Waser (1977a) published a histogram of 108 values

of daily 

 

r

 

. Their mean is about 484 m. The mean daily

 

r

 

 predicted on the basis of an unbounded random
walk of 24 steps with lengths distributed as in Waser
(1984a) is 265 m. So movement within a day appears

Table 1. Net displacements (in metres) as observed in the two studies, and the expected values assuming a random walk
(RW), with and without boundaries. Boundaries and the number of steps follow Barrett & Lowen (1998). Step-length
distributions are taken from Barrett (1995) and Waser (1984a). One month’s finishing point is the next’s starting point. If  a
step would cross a boundary, a different random direction is tried instead, with the same step length. Movement is not
restricted to a lattice. Two-tailed significance levels (in parentheses) compare observed with predicted values

Waser Barrett

Monthly (mean of 11) Yearly Monthly (mean of 7) Yearly

Observed 915 1870 714 620
Unbounded RW 1455 (1·0%) 5062 (20%) 1923 (< 0·1%) 6660 (1·4%)
Partially bounded RW 1044 (54%) 3325 (69%) 1520 (0·4%) 4429 (7·7%)
Fully bounded RW 884 (82%) 1399 (57%) 791 (70%) 809 (77%)
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more directional than expected (

 

P 

 

< 0·1%). In con-
trast, given that daily 

 

r

 

 follows the distribution in
Waser’s histogram, an unbounded random walk pre-
dicts a mean monthly 

 

r

 

 of  2769 m. This significantly
exceeds the observed mean of 915 m (

 

P 

 

< 0·1%), and
is also much higher than the 1455 m predicted from
half-hourly displacements.

However, Waser’s (1977a) description of the biology
suggests that the null hypothesis in all the above
analyses misrepresents the time scale of the random
process. The mangabeys fed mostly on fruits of large
trees that were well dispersed and fruited out of
synchrony (Waser 1974). A tree could fruit for 10 days.
When a mangabey group found such a tree, Waser
(1977a) had the impression that they returned to it
daily, and during the rest of  the day rather systemat-
ically covered the surrounding area. When the tree
stopped fruiting they set off  further afield to find
another large tree in fruit. Consequently daily 

 

r

 

 was
distributed as two non-overlapping peaks either side
of 1000 m (Fig. 9 of Waser 1977a). A more realistic
random-walk model to predict yearly movements might
incorporate only long-distance movements between
these large fruiting trees, ignoring movements under
1000 m, which we suppose are mostly to-and-fro move-
ments around a fruiting tree. Long-distance movements
occurred on 34 days per year, and Waser’s histogram
gives the distribution of this subset of daily 

 

r

 

. Pre-
dicted mean yearly 

 

r

 

 is now 6432 m, which is much
larger than the group’s home range, although still not
significantly different from the observed value of 1870 m
(

 

P 

 

= 13%). (To predict monthly 

 

r

 

 it would be import-
ant that the simulation incorporate variation in the
number of days of long-distance movements per month
– difficult, since such days did not occur at random.)

Barrett’s (1995) mangabeys did not seem to return
to the same major food resource over successive days.

 

Correlated random walks

 

A tendency to return to one tree is one reason that
step direction may violate the assumption of being
fully random. Another likely reason is avoiding an
area just visited. Indeed Waser (1984b) and Barrett
(1995) found a strong tendency for both mangabey
groups not to track back in the short term. Given that,
the analysis should model movement as a correlated
random walk, where directions of successive steps are
correlated. A simple elaboration of equation 2 gives
the RMS 

 

r

 

 in such cases (Kareiva & Shigesada 1983),
but a computer algorithm is required to calculate its
variance (McCulloch & Cain 1989). Instead I used
simulation to test for significance. I used the observed
turning angles from Barrett (1995), assuming no cor-
relation with step length and a symmetric distribution
to left and right. For an unbounded walk, the predicted
mean monthly and yearly 

 

r

 

 are then 2973 m and
10315 m. These considerably exceed the predictions
for an uncorrelated random walk (1923 m and 6660 m).

If  we add boundaries, behaviour at the boundaries
will cause the turning angles in the simulation to diverge
from the specified distribution. But if  we ignore this
problem, the predicted mean monthly and yearly 

 

r

 

 in
the fully bounded case are 841 m and 843 m for the
correlated random walk, not much greater than the
791 m and 809 m for the uncorrelated random walk.
In fact the gross path length in a year is so great relat-
ive to this arena that all sorts of random movement
rules yield similar values of 

 

r

 

, because the end posi-
tion is almost independent of the starting position.
Two points chosen randomly within the arena lie on
average 860 m apart.

 

Centrally biased random walks

 

The hard boundaries used by Barrett & Lowen
(1998) are appropriate for the sharp habitat transi-
tions described by their partially bounded model.
However, the social boundaries with neighbouring
groups seem to be softer, since group ranges overlap
extensively (Waser 1976). Also, Barrett (1995) describes
a core area that her mangabeys occupied more
frequently. Thus a more realistic model might be a
centrally biased random walk in which the probability
of moving towards the centre increases with distance
from the centre (for examples see Chapter 8 of Okubo
1980). The problem is deciding on an appropriate
function relating central bias to position.

 

Conclusions

 

The important points to emerge are that to predict
long-term net displacements from short-term move-
ments one should: (i) either simulate with the observed
distribution of  step lengths or use their RMS;
(ii) describe boundaries accurately; and (iii) either
choose a time scale so that consecutive movements are
uncorrelated in direction, or incorporate the observed
turning angles. Approximating the walk on a square
lattice was surprisingly accurate. Differences between
observed and expected values of 

 

r

 

 are unlikely to be
significant unless several observed values are averaged.

More generally this example demonstrates the
danger of taking simple analytic models ‘off  the peg’
without appreciating their underlying assumptions,
which may severely restrict their applicability. Numerical
simulation allows random-walk models to be applied
more flexibly, but also shows that predictions can be
sensitive to the assumptions. Accurate predictions
modelled closely on the biology would require much
more information, perhaps more than is feasible to
collect. But the purpose of models is not always to
make accurate predictions, and here random walks
have provided an example to demonstrate the import-
ance of boundaries in restricting displacements.

It is unsurprising that when the model incorporates
observed boundaries the predicted net displacements
fit the observations better. As an argument for the
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existence of social boundaries the procedure is some-
what circular: the same sequence of movements that
gave the displacements also suggested the boundary
locations, so they cannot be too incompatible. As an
argument for the mangabeys taking a random walk
it is weak: if  the boundaries are restricted enough
relative to the gross path length, all sorts of movement
rules will result in similar net displacements. There are
better, more direct, ways to test whether trajectories
are true random walks, for instance by examining the
autocorrelation of turning angles. Whether boundaries
exist is better investigated by focusing on behaviour
near the proposed boundary. For instance, Waser
(1977b) went on to perform experimental playbacks
of mangabey calls; mangabeys avoided the speaker,
but only if  under 200 m away, and avoidance was no
greater near the edge of their home range.

 

Acknowledgements

 

Thanks to Louise Barrett, Sean Collins, Sean Rands,
Peter Waser and a referee for their comments on the
manuscript.

 

References

 

Barrett, L. (1995) 

 

Foraging strategies, range use and territori-
ality of grey-cheeked mangabeys (

 

Cercocebus albigena

 

) in
Kibale Forest, Western Uganda

 

. PhD Thesis, University of
London.

Barrett, L. & Lowen, C.B. (1998) Random walks and the gas
model: spacing behaviour of Grey-Cheeked Mangabeys.

 

Functional Ecology

 

 

 

12

 

, 857–865.
Hughes, B.D. (1995) 

 

Random Walks and Random Environments,
Vol. 1: Random Walks

 

. Oxford University Press. Oxford.

Jones, R.E., Gilbert, N., Guppy, M. & Nealis, V. (1980)
Long-distance movement of 

 

Pieris rapae

 

. 

 

Journal of Animal
Ecology

 

 

 

49

 

, 629–642.
Kareiva, P.M. & Shigesada, N. (1983) Analyzing insect

movement as a correlated random walk. 

 

Oecologia

 

 

 

56

 

,
234–238.

McCulloch, C.E. & Cain, M.L. (1989) Analyzing discrete
movement data as a correlated random walk. 

 

Ecology

 

 

 

70,
383–388.

Manly, B.F.J. (1997) Randomization, Bootstrap and Monte
Carlo Methods in Biology 2nd edn. Chapman & Hall. London.

Okubo, A. (1980) Diffusion and Ecological Problems:
Mathematical Models. Springer-Verlag. Berlin.

Rayleigh (1880) On the resultant of  a large number of
vibrations of  the same pitch and of  arbitrary phase.
Philosophical Magazine, Series 5 10, 73–78.

Waser, P.M. (1974) Intergroup interaction in a forest monkey:
the mangabey Cercocebus albigena. PhD Thesis, Rockefeller
University, New York.

Waser, P.M. (1976) Cercocebus albigena: site attachment,
avoidance, and intergroup spacing. American Naturalist
110, 911–935.

Waser, P. (1977a) Feeding, ranging and group size in the
mangabey Cercocebus albigena. Primate Ecology: Studies
of Feeding and Ranging Behaviour in Lemurs, Monkeys and
Apes (ed. T. H. Clutton-Brock), pp. 183–222. Academic
Press, London.

Waser, P. (1977b) Individual recognition, intragroup
cohesion and intergroup spacing: evidence from sound
playbacks to forest monkeys. Behaviour 60, 28–74.

Waser, P.M. (1984a) ‘Chance’ and mixed-species associations.
Behavioral Ecology and Sociobiology 15, 197–202.

Waser, P.M. (1984b) Ecological differences and behavioral
contrasts between two mangabey species. Adaptations for
Foraging in Nonhuman Primates (eds P. S. Rodman &
J. G. H. Cant), pp. 195–216. Columbia University Press,
New York.

Received 13 May 1999; revised 25 October 1999; accepted
28 October 1999

FEC407.fm  Page 271  Thursday, May 25, 2000  4:15 PM


