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ABSTRACT This paper discusses and correcta ideas in L&trup and Ldvtrup (J. 
Morphol. 197:5%62, ’88) on how differential growth rates around the aperture cause 
the gastropod shell to coil at particular angles, The relationship between position 
relative to the shell apex and growth rate is derived. This lets us understand what 
information on relative growth rates around the aperture is sufficient to determine 
the shape of the logarithmic spiral that these growth rates generate. I argue that 
differential growth rates could not be physiologically controlled precisely enough to 
regulate apical angle; they passively follow, not actively direct, shell shape. 

Molluscan shells have long been described as 
logarithmic helicospirals, a curve the shape of 
which we can manipulate by altering few param- 
eters. One aspect of shape is whether shells coil 
in a plane perpendicular to the coiling axis (plani- 
spiral) or whether successive whorls are dis- 
placed along the axis, forming a turbinate shell. 
The recent paper of Ldvtrup and L~vtrup (’88) 
in this journal considers which of the parameters 
that affect this aspect could be developmentally 
controlled by growth processes at the aperture. 
This is a first step in identifying the physiology 
of shell shape regulation; it may help in under- 
standing why some combinations of shell charac- 
ters are rare; and comparisons based on such 
parameters represent better the true divergence 
between shell forms. Unfortunately some of 
Ldvtrup and Ldvtrup’s later arguments are logi- 
d y  flawed. 

On page 60 they quote D’Arcy Thompson 
(’17), who asserted that bovid horns (also loga- 
rithmic spirals) are planispiral only when the 
points where growth is a maximum and mini- 
mum lie on a diameter of the generating curve. 
(The generating curve is the outline of the tube 
sectioned in a plane containing the coiling axis; 
very similar, therefore, to the shape of the aper- 
ture, which may be slightly inclined to this plane.) 
In their work, and elsewhere in this paper, 
“growth” or “growth rates” refers to  the amount 
of shell secreted and is thus measured along the 
spiral trajectory of the shell. Ldvtrup and 
Ldvtrup provide geometrical arguments that, 
whether umbilicate or not, turbinate logarithmic 
spirals with circular generating curves, do indeed 
have the points of maximum and minimum 
growth on different diameters, and that the posi- 
tion of the point of maximum growth is simply 
related to the apical angle of the shell (p  in Fig. 
1). They go on to say that a turbinate shell must 

have these points on the same diameter, but 
that, as this is impossible, a “core” replaces the 
coiling axis. They claim that this umbilicus does 
allow these points to lie on the same diameter, 
although I do not understand how this could be. 
It is also to allow this, they argue, that in real 
shells the generating curve deforms from the 
circular outline of their model. 

Much of this argument I will not discuss fur- 
ther because I fundamentally fail to understand 
why a shell must avoid having points of maxi- 
mum and minimum shell deposition on different 
diameters (Ldvtrup and Lbvtrup: p. 60). What 
does require comment is their misjudgement of 
the relationship between the position of these 
points and the apical angle. This is necessary 
because one of their main conclusions is valid 
and potentially important: growth rates around 
the aperture are theoretically capable of direct- 
ing the shape of the shell. Later in this paper I 
cast doubt on whether this is a practical means 
of developmental regulation (the alternative is 
for the position of the mantle to control growth 
direction); but first I explore the real geometrical 
relationship between shell shape and the pattern 
of differential growth rates. 

POSITION OF MAXIMUM AND MINIMUM 
GROWTH RATE 

Ldvtrup and Ldvtrup’s (’88) Figure 14 (my 
Fig. 1) misplaces the position of maximum 
growth, putting it a t  point B, a simple function 
of the apical angle. Maximum growth rate must 
occur on or below point A, not above. Consider 
two points symmetrically below and above A 
and thus equidistant from the coiling axis. Look- 
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Fig. 1. Section down the coiling axis of a logarithmic 
spiral with circular generating curve and apical angle 8. 
Adapted from L6vtrup and L6vtrup ('88). 

ing along the axis both move the same distance 
about the axis in one revolution, but in a direc- 
tion parallel t~ the coiling axis the point below 
must move further (Fig. 2). Using a similar argu- 
ment the point of minimum growth must lie at 
or above C (Fig. 1). The precise position of the 
maximum and minimum is actually a complex 
function of the expansion rate and the relative 
size of the aperture, as well as the apical angle 
(see Appendix A). 
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Nevertheless, as is shown in Appendix A, they 
are correct that an expanding shell growing iso- 
metrically with a circular generating curve will 
grow planispirally if, and only if, the maximum 
and minimum points are on a diameter. This 
result may even appear intuitive but it must not 
be freely extrapolated to generating curves of 
other shapes. For less symmetrical shapes, 
whether the points of maximum and minimum 
growth lie on a diameter is immaterial and is not 
what determines whether the curve is planispi- 
ral. Thompson ('17) also does not make this 
limitation explicit. 

Consider the triangular aperture in Figure 3. 
Maximum growth will clearly occur at point B, 
as it both has the largest radius of rotation and 
moves furthest parallel to the axis. Conversely, 
the minimum growth rate must occur at C. Line 
CB is not a diameter, yet, depending on the 
relative growth rate elsewhere, for instance at  P, 
the shell can be turbinate or planispiral. 

LOCI OF POINTS OF EQUAL GROWTH RATE 
What aspects of growth rate distribution do 

determine apical angle? Consider a point (r, z )  
on the surface of a logarithmic spiral. r, the 
distance from the coiling axis, increases as an 
exponential function of the number of revolu- 
tions (t). 

z is the distance from the apex measured parallel 
to the axis. Since growth is isometric, 

where b is a constant (cot-'(b) is the apical angle 
for that point-see Fig. 7). 

:. r = Ae", where A and i are constants. 

z = br 
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Fig. 2. The same section as Figure 1 (omitting the left- 
hand side). The distance d,, moved in one revolution parallel 
to the coiling axis by point B,, is l e s  than d,, the correspond- 
ing distance for BL. 

Fig. 3. Superimposed sections, down their coiling axes, of 
two shells with the same triangular generating curves. Their 
apical angles differ, yet the points of maximum and minimum 
growth rate (Band C) are identical. 
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Fg. 4. Elliptical contours of equal growth rate (B) for 
pointa on a lcgarithmic helicospiral. The loci for two values of 
i, the expansion rate, are shown, but the value for the left- 

Growth rate is considered as the length of 
shell laid down per angle of revolution about the 
coiling axis. This length is the distance moved by 
a point on the aperture as the shell grows, mea- 
sured along the curve of its trajectory, i.e. the arc 
length. It is a standard result in differential geom- 
etry that 

(d(arc length))' = (dr)' + (rdt)' + (dz)' 

:. (d(arc1ength))' = (irdt)' + (rdt)' + (birdt)' 
since dr = dr/dt x dt and dz = d d d r  x dr 

d(arclen@) ' = (i + 1)1" + iZZ2 '"[ dt ] 
So for a particular growth rate, g, 

g" = (i' + 1)P + izzz 

The locus of points with equal growth rate is 
therefore an ellipse with center a t  the origin. 

This means that for particular values of i (the 
expansion rate) we can draw, on a section con- 
taining the coiling axis, a system of concentric 
elliptical contours where growth rates are equal 
(Fig. 4). The outline of an aperture can lie any- 
where on Figure 4 and we can read from the 
contours the relative growth rates at different 
points on the aperture. Note that we cannot alter 
the apical angle that the centre of the aperture 
makes without change in these relative growth 
rates. Thus if apical angle were regulated by 
other developmental processes, a by-product of 
any change in apical angle that left aperture 
shape unaffected would be a change in the pat- 
tern of growth rates. 

Conversely, if we specify the expansion rate (i) 
and the two ratios linkmg growth rates a t  three 
specified points around an aperture (and specify 
that the aperture is coplanar with the coiling 
axis), there is generdy only one position at  which 

i = 0.05/rad 

t 4 
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hand diagram is unrealistidy high: the range of i in the 
British terrestrial s n a i l  fauna is O.o08/radian to O.lZ/radian 
(fromCameron['81],usjngi=@n N7/[2r]) .  

the aperture can sit to match the contours. We 
can then read from the diagram the consequent 
orientation of the coiling axis relative to the 
aperture and the apical angle of the shell result- 
ing from such a pattern of growth rates. Rigorous 
control of growth rates would thus determine 
growth direction. 

We can now also understand how defining the 
position of the maximum and minimum growth 
rate does not necessarily determine the apical 
angle (discussed on page 260). Figure 5 shows 
how the triangular aperture of Figure 3 can be 
moved around the diagram, making various api- 
cal angles, without changing the points of maxi- 
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Fig, 5. The generating curve of Figure 3 can sit anywhere 
in this quadrant of the growth-contour map (see Fig. 4) 
without the sites of maximum and minimum growth (B and 
C) changing. But the circle cannot sit anywhere where growth 
is amaximum at M and a minimum at N. 
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mum and minimum growth. It also shows that 
we cannot specify these points to be just any- 
where on the outline. For instance, if the maxi- 
mum growth on the circular aperture occurs at 
M, whatever the aperture's position on the dia- 
gram or the shape of the ellipses, minimum 
growth cannot occur at N. Thus, if the aperture 
is rigid and in a plane containing the coiling axis, 
only certain patterns of growth rate are possible 
and growth rate at any particular point is con- 
strained by growth rates elsewhere. 

Return now to the original problem of when it 
is that the points of maximum and minimum 
growth lie on a diameter of a circle. As can be 
grasped from Figure 6, the ellipses never make 
tangents with a circular aperture a t  points on the 
same diameter, unless the circular aperture lies 
symmetrically over the coiling axis, impossible 
in three dimensions, or unless it lies over the 
horizontal axis, thus forming a planispiral. This 
would also be the case if the elliptical loci be- 
came circular, but (? + 1) > i2, so circular loci 
would imply an infinitely large value of i, i.e., 
expansion outwards without rotation, which is 
nonsensical with a circular aperture orientated 
in this plane. Another possibility is for i = 0, no 
expansion, when the elliptical loci become 
straight lines parallel to the coiling axis. In such 
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Fig. 6. Sites of maximum and minimum growth around a 
circular generating curve positioned at three different apical 
angles. Three contours of equal growth rate are also shown 
(seeFig.4). 

coiling 
aXlS 

I 
T I\i' talii( b) 

I 
I 

z 

Fig. 7. The same section as Figures 1 and 2, showing 
terms used in text. 

a staircase-like helix, the points furthest from, 
and nearest to, the coiling axis are sites of maxi- 
mum and minimum growth, regardless of pitch. 

DISCUSSION 

Having explored the geometrical relationship 
between differential growth rate and apical an- 
gle, and recognized that the former could thus be 
the physiological process that directs the latter, I 
will now question how powerful such develop- 
mental control could be. To use an analogy, the 
usual way to build a wall is with parallel courses 
of bricks. So one might think that it is the bricks' 
rectangular shape and consistent size that makes 
a wall vertical and flat-topped. In fact, it is the 
builder's use of a plumb line and spirit level that 
controls these attributes and he could make an 
equally vertical wall if some of the bricks were 
malformed, or even by selecting irregular stones. 

When expansion rate and the shape of the 
generating curve are fixed, growth rate around 
the generating curve must indeed determine the 
orientation of the coiling axis and apical angle. 
But equally, if instead it were orientation of the 
coiling axis and apical angle that were fixed, 
particular patterns of growth rates could still be 
accommodated by an altered expansion rate, a 
rotation or distortion of the generating curve, or 
just an inclination of the aperture out of the 
plane of the coiling axis without altering its shape 
in cross-section. 
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In most snails each whorl has to attach to the 
shell one revolution earlier, and often only a 
specific region of the proceeding whorl appears 
suitable as a site of attachment. The possibility 
exists that the body follows this part of the 
preceding whorl like a car follows the asphalt 
(Hutchinson, '89). If this were not to be dis- 
rupted, differential growth could exert only a 
severely constrained influence on how the shell 
coils. Either the distorsions to the aperture men- 
tioned in the preceding paragraph would occur 
and/or growth rate would largely have to re- 
spond passively to accommodate active position- 
ing of the shell, accurately spaced away from the 
preceding whorl by the width of the body. Simi- 
larly with aperture shape we can envisage other 
mechanical constraints that might limit how 
much this responds to patterns of growth rates: 
in the short term, the new shell is constrained to 
fit onto the old aperture; and we might suppose 
that the body would resist the deformation nec- 
essary to secrete, or withdraw inside, certain 
novel shapes of aperture that growth rates might 
require, especially if the latter were perturbed by 
damage. 

Without experiment we therefore need to con- 
sider further to what extent growth rates either 
direct shell characters or have to accommodate 
to the demands of other shell parameters. Regu- 
lation of shape by mechanical processes is at 
least easier to conceive of than the unknown 
means by which shell secretion would need to be 
kept accurately tuned along the mobile, deform- 
able strip of mantle edge. It is hard to envisage 
every mantle cell on a complex outline % ~ ~ i n g ~ ~  
physiologically even the correct speed to ad- 
vance just so as not to lag behind its neighbor. I 
consider it much more likely that a limited capa- 
bility of the mantle edge to deform holds back 
mechanically those local regions of mantle that 
tend to rush ahead in shell production, so ensur- 
ing the smooth aperture edge that we observe. 
(Excess production might instead be turned to 
local thickening.) It is in just the same way that 
other mechanical forces acting on the mantle 
edge, such as a reluctance of the body to part 
company with the preceding whorl, could force 
growth rates to assume patterns unrelated to the 
growth rate potential of the tissue. 

Using the formulae derived in Appendix A, I 
have quantified just how accurately growth rates 
would have to be controlled in order to regulate 
apical angle. It turns out that quite exceptional 
accuracy is required. The data in Cameron ('81) 
suggest that Trichia striolata is typical of Brit- 
ish pulmonates in its expansion rate and size of 

umbilicus, which give values of i = 0.068 and 
M = 0.415, if we assume a circular generating 
curve (these parameters are defined in Appendix 
A). Consider the growth rates when the center of 
the generating curve is 10 mm from the coiling 
axis. In the planispiral case (apical angle 0') 
maximum growth occurs, as we know, at I$ (see 
Fig. 7) = O", and minimum growth at I$ = 180'. 
When the apical angle is 45') maximum growth 
rate is 14.2 mm/radian and occurs when 4 = 
-0.19'. The growth rate at 4 = 0' is only 2.2 x 

mm/radian less than the maximum. Consid- 
ering sta an apical angle of 45', minimum growth 
rate occurs when I$ is only 0.45' short of 180", so 
the maximum and minimum points miss being 
on a diameter by just 0.26'. Minimum growth 
rate is 5.9 mm and growth rate at 4 = 180' is 
only 1.3 x lop4 mm/radian more. Nor do pat- 
terns of growth elsewhere on the generating curve 
alter much the points halfway between the sites 
of maximum and minimum growth grow, in the 
planispiral case, at 0.7070 the maximum rate, 
and in the turbinate case, a t  0.7081 and 0.7075 
the maximum rate. It thus seems extremely im- 
plausible that a snai l  could directly control rela- 
tive growth rates accurately enough to regulate 
the apical angle between 0' and 45', let alone 
within the narrower limits observed in nature. 

Bovid horns appear a more likely case of differ- 
ential growth directing shape, since the flexible 
mantle is replaced by a horn-secreting annulus 
supported by a rigid bony boss, and coiling is not 
constrained by the need for consecutive whorls 
to attach. However, I will again quantify the 
accuracy of growth rates required to regulate 
apical angle, using parameter values estimated 
from the horn of a domestic sheep (0th aries): 
i = 0.19, M = 0.21, apical angle = 62'. If the 
horn were circular in section, the points of maxi- 
mum and minimum growth still would lie only 
1.59' off a diameter. The points half way be- 
tween the sites of maximum and minimum 
growth grow at 0.8424 and 0.8415 the maximum 
rate. The ragged surface of the horn of the sheep 
does not suggest that the regulation is therefore 
precise enough to control the apical angle, al- 
though relative growth rates could well control 
the tightness of coiling. An alternative is that it is 
the curved bony core within the base of bovid 
horns that moulds the horn extruded around it 
(Thompson, ,171. 

Curly hair is a clearer example of a spiral, 
although not an expanding one, in which growth 
rates could well dominate mechanical constraints 
in determining the tightness of coiling. But for 
apical angle to be regulated in this way, the 
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elliptical loci of equal growth rate must appear 
less like straight lines, requiring larger expmsion 
rates and generating curves. So perhaps Ldvtrup 
and LQvtrup’s idea might be most applicable to 
the bivalves, in which these characteristics are 
most developed. 
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APPENDIX A 

Figure 7 is a section down the coiling axis of a 
logarithmic spiral with a circular aperture. (r, z )  
are the co-ordinates of the aperture center, mea- 
sured relative to the apex of the spiral. (r*, z* )  
are the co-ordinates of a point on the periphery 
making an angle 4 with a radius perpendicular to 
the coiling axis. 

Growth is isometric, so z = br and R (the 
radius of the aperture) = Mr, where M ,  b are 
constants. 

r* = r + Rcos@ = (1 +Mcos$)r 
z * = b r - R s i n $ = ( b - M s i n $ ) r  

Let r = Ae” (logarithmic spiral), where A is a 
constant, t the number of revolutions, and i a 
measure of the rate of expansion radially. 

and 

:. dr* = dr*/dr x drldt x dt = (1 + Mcos4)irdt 

dz* = dz*/dr x drldt x dt = ( b  - Msin$)irdt 

It is a standard result that 
[d(arclength)l’ = (dr*)’ + (r*dtI2 + (dz*)’ 

:. [d!srclength)12 = [(l + Mcos@)irdt]* 

+ [(l  + Mcos $)rdt]* 
+ [ (b  - Msin$)irdtI2 
d(arc length) 

dt growth rate = 

= r[(? + 1)(1 + Mcosd2 
+ i2(b - Msin+)~]1p~ 

At those points around the aperture where 
growth rate is a maximum or minimum, 

d(growth rate) 
d$ = O  

: . M r [ M s i n ~ c o s $ + ( i 2 + 1 ) s i n @ + b ~ c o s @ ]  = O  (Al) 

If two solutions exist on a diameter, this is true 
also for 4 + T. 
: .Mr[Msin(~+?r jcos($+?r)  

+ (iz + 1) sin(@ + ?r) + bi’cos ($ + ?r)l = 0 

:.Mr[Msin$cos@-(iZ+1jsin~-bi’cos$1 = O  (A2) 

Adding Equations A1 and A2, 

This is only true if 
Wrsin$cos@ = 0 

r = 0 or M = 0 (trivial cases); 
or cos $ = 0, but this is never a solution to 

(All; 
or sin $ = 0, which is a solution to (Al) when 

bi2cos 4 = 0. 
The latter is true either when i = 0, the 

limiting case of a non-expanding helix, or when 
b = 0, the planispiral, thus the only case of an 
exponentially expanding helii where maximum 
and minimum growth rates occur on exactly 
opposite sides of a circular aperture. 


