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1 propose that a snail uses the shape of the preceding whorl as a cue to dictate 
where upon it the new whorl attaches. The consequent constant difference in 
orientation between successive whorls can generate the domed outline that is 
commonly observed. This "road-holding" model is considered more representative 
of growth processes than models that generate logarithmic helicospirals, but I 
consider how the curve of the shell just behind the aperture might also act as a cue, 
to line up the shell-secreting mantle. I discuss why it might be that shells dome less 
as they grow, and suggest a set of biologically more meaningful measurements with 
which to compare shells. 

I. Introduction 

A gast ropod shell is in structure a rolled-up cone. This normally expands and coils 
regularly, so that the outline closely follows a logarithmic helicospiral, its dimensions 
increasing exponential ly each revolution (Fig. 1 shows some examples  in cross- 
section). Growth  occurs only at the open end of  a shell but, by following such a 
spiral, the shape of  the whole shell is unaltered however many  whorls grow. 
Furthermore,  each band of  new shell added is the same shape (gnomic growth) or, 
viewed as a continuous process, the shell deposit ion rates around the aperture 
remain in constant ratios to each other (Thompson,  1917). 

So many  molluscs follow more or less this simple shape that, by altering the few 
parameters  that determine a logarithmic spiral, Raup (1966) generated the appear-  
ance of  a large portion of  the molluscan shell radiation. In his model the shell was 
traced out by the path of  a generating curve expanding and revolving about  the 
coiling axis; when a circular generating curve overlaps on successive whorls, a 
lunulate aperture is produced (Fig. 1). Raup used one parameter  (W)  to describe 
the proport ional  increase in the shell radius each revolution; a second (D)  fixed 
the relative distance of  the generating curve from the coiling axis, and thus the 
extent of  overlap with the preceding whorl; a third (T)  described its translation 
rate parallel to the coiling axis (Fig. 1); further parameters  would be necessary to 
describe the shape of the generating curve. Other  workers have used these, or similar 
parameters ,  to describe and compare  variation even within a species (e.g. Newkirk 
& Doyle, 1975), because they are geometrically independent  and together fully 
describe a perfect logari thmic spiral. 

Inevitably real shells are not quite as isometric as a perfect logari thmic spiral. 
Outlines of  Conus show that during ontogeny W and T change progressively (Kohn 
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FIG. 1. Sections down the coiling axis of perfect logarithmic helicospirals. Each differs from the top 
left-hand spiral by the setting of just one parameter. 

& Riggs, 1975). Figures 2(a-c) show similar alterations to the log-spiral parameters 
of a terrestrial pulmonate. These data stem from my own research on Trichia hispida 
(L.) in which I have found that a section down the coiling axis (Fig. 3) gives much 
more insight into developmental processes than does the exterior alone, besides 
enabling accurate measurements of all dimensions of even the smallest whorls. This 
species also exhibits a trend that is especially common in terrestrial snails (Gould, 
1968; Vermeij, 1980): the outline of the spire is not triangular but domed [Fig. 3(a)]. 

Although the log-spiral's attractive simplicity would be lost, the model could be 
elaborated to model this doming as an aliometric increase in T, decrease in W 
(Vermeij, 1980), and /or  change in shape of the aperture (Gould, 1968). But, as the 
sections in Fig. 3 show, the doming appears to be associated with a changed 
inclination of the long axis of the generating curve to the coiling axis, leading me 
to propose a quite different model of gastropod growth. 

2. A New Model of Spiral Coiling 

Retain from the log-spiral model the constant shape of the aperture and its 
exponential increase, but suppose that, instead of the aperture following a predeter- 
mined trajectory in space, its inner edge between the sutures is directed to attach 
consistently to homologous sites on the preceding whorl. How this can generate 
doming is shown in Fig. 4(a) and compared with the generation of a similar spire 
outline by a modified log-spiral [Fig. 4(c)]. 

In this new model, growth is not gnomic (the shape of the whole shell alters with 
each increment and succeeding increments are relatively more tightly coiled for 
their size); but the developmental rule is simple and invariant [in geometrical terms, 
repeated application of a similarity transformation generates the view in section, 
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( a )  2 m m  2 m m  

(b) 2 m m  

FIG. 3. Sections down the coiling axis of (a) Trichia hispida, (b) Oestophorella buvinieri, (c) Cerion 
glans. The angle a is the change in inclination of the line joining inner and outer sutures. 

Fig. 4(a)]. D, W and T may change during ontogeny, but this is incidental. The 
logarithmic spiral is a special case of the new model, in which successive whorls 
attach such that they remain parallel in orientation. To describe where the next 
whorl goes, the same number of  parameters need be set in both models, because 
the position of  attachment determines the translation rate as well as the change of  
orientation (in conjunction with the aperture shape, which both models have to 
describe). However, to describe the whole shell, the new model requires an extra 
parameter, setting the initial orientation of  the generating curve. 

3. Biological Realism of the Two Models 

(A) MECHANISMS OF GROWTH REGULATION 

The road-holding model 

The chief attraction of  this new model is that it seems likely to reflect the biological 
processes guiding shell growth. The portion of  the old whorl to which the new whorl 
attaches is often relatively flat (seen in cross-section, Fig. 3) and provides an obvious 
" road"  for the mantle, poking out from the aperture, to follow. I will therefore 
christen this new model the "road-holding model".  Many shells, especially when 
immature, have a sharply angled periphery [Figs. 3(b, c)] and this keel might provide 
an even more helpful "railway line" for the outer suture to track thereby also 
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(b)  
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(o) (d) 

FtG. 4. Sections down the coiling axis of hypothetical shells with a rectangular generating curve 
(right-hand side only shown). (a) is generated by the road-holding model (same site of attachment); (b) 
log-spiral model; (c) log-spiral model with increasing translation rate; (d) log-spiral model with the same 
consistent change in inclination of the aperture as in (a). 

engineering a shell with sutures that are only shallowly indented, possibly advan- 
tageous in resisting predation).  Many tropical sea shells (e.g. Strombus gigas, the 
queen conch) have massive spines which may be similarly tracked and must certainly 
limit where the mantle can reach to deposit  new shell. When whorl outlines are 
more rounded,  so long as they are not circular, the curvature of  a particular portion 
will still be distinct and could be tracked by the matching outline of  the mantle. 
But we can make a testable prediction that in such snails shell shape regulation is 
less precise. 

It seems implausible that the snail could accurately feel, f rom the way that its 
soft body is bent, where its body lies one revolution before. That  is why I emphasise 
that it is the shape of  the shell that is followed, as the only cue of where the preceding 
whorl lies. In the parlance of embryologists  working on much smaller-scale 
phenomena ,  this is a process of  contact guidance. 

Three alternative mechanisms to generate a logarithmic spiral 

Are there alternative mechanisms for constructing the trajectory of  a logarithmic 
spiral, without reference to the preceding whorl? I can suggest three techniques. 
The first, favoured by L0vtrup & LOvtrup (1988), is rigidly to maintain the shape 
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and inclination of the aperture, so that constant asymmetries in the rates of shell 
deposition around the aperture produce a logarithmic spiral. But, as I discuss 
elsewhere (Hutchinson, in press), it seems impossible for relative growth rates to 
be maintained sufficiently accurately. 

Even if the snail cannot, via its convoluted body, directly relate the position of 
the apex to that of  the aperture, it could theoretically extrapolate from the curve 
of the last whorl where the coiling axis and apex lay, and then direct its shell-secreting 
mantle the correct distance away from them. But, at least in umbilicate shells, 
accurate estimation of the coiling axis's position seems implausible. 

A third technique is to ignore the coiling axis but regulate the constant shallow 
angle that the new band of shell makes with the band to which it attaches (a  in 
Fig. 5). Although small deviations in this angle affect the spiral's shape dramatically, 
this mechanism is plausible, because the body "ext ruded"  from the aperture is 
preset in approximately the correct curvature, which could be finally adjusted by 
slight isometric expansion. The mantle could thus be lined up by the shell behind 
the aperture. Figure 5 illustrates this lining-up process maintaining the expansion 
rate away from the axis; it is even simpler to regulate similarly the translation rate 
parallel to the axis, since the "f loor" and "ceiling" of  the inside of  a logarithmic 
spiral are flat, inclined at constant angles to the vertical. 

Regulation of distancefrorn the coiling axis 

In one respect the road-holding model is almost bound to be right and the lining-up 
model wrong. If the preceding whorl suddenly swelled or narrowed, the next whorl 
would surely follow; I cannot imagine it obstinately ceasing growth because its true 
path was blocked, nor blindly continuing along the same spiral despite having lost 
all contact with the preceding whorl. Okamoto (1988a) studied some unusual 
ammonites that do coil regularly out of contact with earlier whorls, but the whorls 
of most snails attach to their predecessors. Think of  bending a piece of  wire into a 

(a) (b) (c) 

coilin~ 

Fits. 5. Mechanism for regulating angle ~, that which a new band ofshell makes with the old aperture. 
The outer whorl is shown sectioned perpendicular to the coiling axis, with the body protruding (b) to 
lay down a new band of shell (c). The body protruded From the aperture is preset in approximately the 
right curvature (once it has undergone slight isometric exp~msion). 
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spiral-- i t  is much easier to wrap it round something than to separately bend each 
section to the correct curvature. In just the same way, the strand of  silk forming 
the capture spiral of  a spider's web is spaced away from the preceding revolution 
by the spider using its legs as calipers (Vollrath, 1987). 

In snails the first few whorls exhibit the process most clearly. Figure 1 shows 
log-spiral shells that have expanded steadily from nothing. By the time that the 
aperture is the size of  the initial whorl of  a real snail, it is a long way from the axis, 
much further than the radius of  the protoconch about which a real snail coils. The 
shells in Fig. 1 thus look peculiar because real shells, by road-holding around the 
protoconch,  start to coil more closely to the axis than expected by extrapolation 
from their subsequent growth parameters. The initially low values of  D [Fig. 2(a)] 
are a symptom of  this nucleating effect. 

Regulation of translation rate 

Given this constraint that successive whorls must be in contact, there is still a 
continuous choice where to attach the next whorl and it is this that we are primarily 
attempting to model. So, which does the snail maintain, the curvature and translation 
rate of  the shell behind, or the curvature (in a perpendicular plane) of  its inner 
margin, matching that of  the preceding whorl ? To appreciate the distinction, consider 
rolling up a carpet that has started to coil at an angle; frustratingly, it is impossible 
to get the ends square because it is lined up by the carpet just behind. Now consider 
instead a cable being neatly coiled on a drum; it follows the course dictated by the 
preceding coi l - - the  road-holding model. 

Particularly in keeled snails, the preceding whorl seems too true and available a 
cue for the snail to ignore. It has the advantage of  damping any perturbations that 
occur and is much less likely than the outer whorl to mislead by being damaged. 
But it is quite possible that both mechanisms act concurrently; in a shell coiling 
regularly they need conflict little, or not at all if their parameter settings exhibit 
allometry, so that they could correct each other's mistakes. 

(B) T H E  G E N E R A T I N G  C U R V E  A N D  A P E R T U R E  S H A P E  

The lack of  biological realism in the log-spiral model is emphasised when we 
consider alterations to the coiling parameters of  real shells. In Figs 6(a-b),  we see 
how the logarithmic spiral models a change in translation rate, T. The new aperture 
has an increased area and a different shape, and the shape of  some of  its outline 
(shown dotted) is guesswork, because this part of  the generating curve was not 
reatised in the original shell (a problem encountered by Heath,  1985). It seems 
biologically quite inappropriate to thus preserve the shape and size of  the generating 
curve at the expense of  those of  the aperture. 

With the road-holding model the aperture is not constrained to remain parallel 
to its orientation one revolution earlier, so a sudden change in translation rate can 
be modelled as the mantle merely directing the sutures to follow a new " road"  
on the preceding whorl. The new band of  shell, although oriented differently, is 
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F1G. 6. Suppose (a) to be a section down the coiling axis of a real shell. With the log-spiral model, 
simulation of a change of translation rate requires some of the outline to be guessed (shown dotted) 
and produces a very altered aperture shape (b), compared with a simulation of the same change in 
translation rate based on road-holding principles with an altered site of  attachment (c). 

identical in outline, and the shape and area of the aperture as a whole need alter 
little [Fig. 6(c)]. 

(C) INCLINATION OF THE APERTURE 

Another attraction of the road-holding model is how easily it accounts for the 
obvious ontogenetic change in inclination of  the long axis of the whorl cross-section, 
becoming more perpendicular to the coiling axis (Fig. 3). (Workers often appear 
to treat whorl measurements made parallel or perpendicular to the coiling axis as 
homologous from whorl to whorl, but it seems obtuse to thus regard this rotation 
instead as a distortion, with the body's orientation to the coiling axis remaining 
constant; perhaps this could be proved by mapping the homologous points some- 
times provided by spiral bands of pigment.) We could introduce such rotation into 
the log-spiral model, by rotating the generating curve about its centre which follows 
the original path [Fig. 4(d)]; but Fig. 4(d) has a concave, not domed, outline to the 
spire. Doming is caused by the position of attachment lying closer to the axis, not, 
by itself, the change in orientation of the aperture. A log-spiral model would have 
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to be modified in both respects, dispelling further its chief attractions, simplicity 
and isometry. 

4. Modifying Influences 

The road-holding model not only accounts for this change in orientation of  the 
whorls, but predicts that the change in inclination of  the line joining the inner and 
outer suture (a in Fig. 3) should be constant. The prediction is not borne out in 
T. h i s p i d a - - a  decreases as these lines on successive whorls become more parallel 
[Fig. 2(d)]. This is equally a problem for a log-spiral model, but with the road-holding 
model we can perhaps understand why the allometry occurs. 

One explanation could be that the shape of  the aperture has also altered. If the 
new whorl still attached to the homologous points on the old whorl, a change in 
aperture shape would directly affect the inclination of  the next whorl. The effect 
may be greater if the developmental  program defines "same point on the preceding 
whorl" by some criterion other than homology, for instance relative to the site of 
a particular curvature. Further work is required to identify such a rule and to test 
whether application of the same rule to the altered aperture shapes would indeed 
result in the inclination changing less. 

Another factor may be more important. Doming causes the radius of  the shell to 
become progressively smaller, relative to the size of  the whole shell. The road-holding 
model would predict the same to be true for the relative size of  the u m b i l i c u s  [as 
in fact is generally observed in land snails (Goodfr iend,  1986), although in T. hispida 
the tendency is overcome by the aperture becoming rounder].  Quite possibly there 
are anatomical constraints in a species as to how tightly the whorl can coil, 
mechanically counteracting the tendency for the new whorl to follow the same 
" road"  on the old whorl. If  a doming snail grew more whorls, the change of  
inclination would certainly have to stop eventually, otherwise even portions of  the 
same whorl half  a revolution apart would interfere. 

This factor is particularly evident in the complex allometry of  Cerion ['Fig. 3(c)]. 
The roof  domes just as with T. hispida, but eventually this causes constriction of  
the umbilicus and, in order to grow further, the succeeding whorls simply must lie 
parallel to each other. Note that it is the initially large umbilicus that allows the 
doming. I suggest that the reason why doming is rare in marine snails (Gould,  1968) 
might be little to do with the roof  outline itself, but the virtual absence of an 
umbilicus in the young shell. This in turn depends on whether the first whorl coils 
planispiraily or more turbinately, in land snails, selective pressures which might 
decide the latter include packing considerations inside the egg, which most marine 
snails lack. 

5. The Place of Road-holding in a Synthetic Framework 

The real situation thus seems more complex than the simple road-holding model 
idealised in Fig. 4. My view of  the influences determining where new shell is laid 
can be formalized by a crude equation of three terms: 
Shell shape at revolution & = ss(c~) 

= f [' ss(  (a - 21r), ss(  c~ - 8~),  physiology] 
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The first term, ss(dp-27r), incorporates the road-holding model and states that 
shell shape depends on the shell shape one revolution earlier. The second term, 
ss(cb -8~p), admits that the mantle may be lined up by the shell behind the aperture 
and that the new band of  shell is constrained to attach to, and thus diverge only 
gradually from, the present aperture. The reluctance of  the shell to coil too tightly 
could also be modelled by such a term, as a function of  the shell's curvature leading 
up to the aperture. The third term, "physiology",  is there to include influences 
independent  of  earlier shell shape. For instance, many apertures change shape at 
maturity, often quite suddenly (Fig. 3). This can occur at various shell sizes, 
presumably subject to environmental influences. 

Possible another  term incorporating more diffuse measures of  shell shape may 
be necessary. Okamoto (1988a) explains the convoluted outline of  a heteromorph 
ammonite as due to regulatory responses to changes in life orientation, determined 
by the balance of  the shell (see also fig. 7 of  Bayer, 1977). Perhaps in some gastropods 
also the weight distribution of  the whole shell affects how it is held relative to the 
mantle, and thus its subsequent shape. But the purpose of  my simple equation is 
only to emphasise that more realistic models must include, amongst others, a 
(~b - 27r) term, previously ignored. 

Such a term gives rise to a difference equation. Others (e.g. Bayer, 1977) have 
suggested modelling shells with difference equations, but the time difference 
envisaged was one growth band, not one revolution; theirs is just a version of  the 
lining-up model. Shells do grow in discrete increments, but this is no justification 
for modelling each increment as linear rather than curved. The advantage of  their 
difference equations over differential equations appears merely to be computational 
simplicity. (Linear increments do correctly predict a decrease in the convexity of  
some bivalves as a growth rate slows (Bayer, 1978), but the fit with the theory is 
not shown to be quantitative. McGhee (1978) shows that the size of  the increment 
has little effect on convexity.) 

6. When Does Road-Holding Occur? 

Much of  the more recent work on shell shape has concerned bivalves and 
brachiopods (e.g. Savazzi, 1987; McGhee,  1980) whose few coils and high expansion 
rates make the road-holding model irrelevant. Other work has been directed at 
cephalopods (e.g. Bayer, 1977). Their usually planispiral shape does also not 
immediately suggest the importance of road-holding, paradoxically perhaps because 
it is so effective in keeping the shell planispiral. Certainly road-holding seems 
unavoidable in those ammonites with sharp keels and considerable whorl overlap, 
which " r ide"  the preceding whorl like a monorail.  In the much rarer cephalopod 
and gastropod species in which successive whorls do not touch, road-holding can 
play no part. Measurements of  the coiling of  such shells may still fit a logarithmic 
model (Okamoto, 1988a), but whether less well than normal shells has not been 
quantified. (I have stressed the regulatory benefits of  the road-holding model, but 
the bizarre shapes of  some of  these shells with disjunct whorls emphasise that the 
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need to attach somewhere on the preceding whorl is a severe restriction on morpho- 
logical diversity.) 

In turbinate gastropods the relative importance of the (~b-27r) and (~b-8~b) 
terms is less clear cut. We need actually to test whether the position of the inner 
margin of the new whorl really is a function of the shape of the outer margin of 
the preceding whorl. If the inner margin were orientated relative to the point on 
the previous whorl furthest from the coiling axis, both the (d~-2¢r) and (~b-84~) 
terms would be involved. Some terrestrial snails may be variable enough for carefully 
measured cross-sections to provide the critical data; but most measurements in 
terrestrial snails are somewhat correlated with size or maturity, which makes detec- 
tion of other independent correlations difficult. 

A more rigorous approach would be to manipulate the outline of the penultimate 
whorl by attaching ramps of different shapes in various positions. The converse, 
manipulation of the present whorl, risks too many other, stress-related consequences. 
But sometimes such damage occurs naturally and can result in the new shell going 
off at a new angle, riding rough-shod over the penultimate whorl's outline [Fig. 
7(b)]. It appears that lining-up by the shell behind has overridden any road-holding 
program [although it could be that the body has been damaged so that it is a 
road-holding program that is giving the wrong instructions; Oldham (1931) found 
snails stressed by mite infestations to grow similarly scalariform]. We know not on 
how many other occasions following damage, road-holding might instead have 
steered an errant whorl into line, as suggested by Figs 7(d-e). Similarly, Stelfox 
(1968) breeding for scalariformity, complained that promising new-born shells "had 

(a) (b) 

r n ( C )  ~ (d) . ~  

FIG. 7. (a) normal  Monacha cantiana; (b) scalariform M. cantiana from the same site, coiling at a 
new angle following damage;  (c) normal  Atlanta arbustorum; (d ,e )  two views of  a sca ladform A. 
arbustorum from the same site, somewhat  corrected in its deviation. 
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the uncanny knack of  correcting the spire during growth",  not something that 
lining-up could achieve. 

7. Applying the Road-holding Model 

How is the road-holding model of  value to us? Its role is probably  not in 
comparisons between larger taxa (cf. Raup, 1966), but nearer the species level and 
through ontogeny, with reference to real specimens. We have already seen that 
obedience to a constant developmental  rule eliminates the need to put forward 
involved allometric explanations for why doming occurs. Once the road-holding 
model is considered the null case, it is different allometric changes that we have to 
explain, or even opposite ones, such as a reduction in the degree of  doming with 
s ize--ear l ier  authors were trying to explain why it should increase (Gould,  1968; 
Vermeij, 1980). This may mean that different selective pressures are recognized as 
important.  Also, in imitation of  Raup 's  classic work (1966, 1967) with the logarithmic 
spiral, we could generate an array of  new shapes and ask why some of them have 
not been produced by nature. 

But the primary importance of  this model is in suggesting new measurements  
with which we should compare  shells. Raup (1961) claimed that the log-spiral model 
"represents an at tempt to diagnose shell form in terms of truly natural parameters,  
related to growth, rather than in terms of  rather arbitrary characters such as width 
of  body whorl or spire height".  It was a positive step to consider growth processes, 
since increments to the shell should be simpler to interpret when they change than 
the cumulative product  of  such changing increments. But according to the road- 
holding model,  Raup 's  growth parameters  are equally arbitrary, complex products 
of  the characters that the snail can alter directly. 

For instance, Raup defines the expansion rate, W, in terms of  the relative increase 
in radius each revolution. This will alter if the shell domes (later whorls are added 
more ventrally, and less laterally), yet no change to the angular rate of  increase in 
area of  the aperture need be occurring. Others have already realized (e.g. Vermeij, 
1980) that W and the translation rate parallel to the axis, T, will be inversely 
correlated, "'to maintain contact of  the aperture and coiling axis" (Newkirk & Doyle, 
1975), so these authors '  discussions are encumbered with alterations to two para- 
meters, rather than one, when the site of  a t tachment  to the preceding whorl shifts 
or the aperture becomes relatively smaller. Instead, the road-holding model suggests 
that one parameter  should describe the expansion rate of  the aperture in terms of  
area, and another  its position relative to the last whorl. Each seems likely to be 
under  more direct biological control, and not directly affected by changes in the 
other. For similar reasons, I further propose that we should measure expansion rate 
with respect to the arc length traversed along the preceding whorl, rather than per 
angle of  ro ta t ion- - i f  the shell were unrolled, this measure would be the taper of  
the cone. 

Both models require a description of aperture shape. As Okamoto  (1988b) 
observed, "Any fixed co-ordinate system is no more than an artificial f ramework 
imposed upon the coiling pat tern";  we would therefore not wish to measure parallel 
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and perpendicular to the coiling axis, as is standard practice (Cox, 1960: 126). Of 
more relevance to what the snail can sense, and direct its shape towards, is a m o v i n g  

framework dictated by the aperture itself, perhaps most simply relative to the line 
joining the inner and outer suture. Unlike the point on the aperture furthest from 
the axis, the sutures are always recognizable as homologous from whorl to whorl 
or shell to shell, making it more likely that the measurements based on them will 
be also. 

L0vtrup & L0vtrup (1988) shared a similar concern about biological reali ty--that 
the translation rate, or apical angle, in the log-spiral model was not described by a 
measurement related to a process at the mantle edge. The most basic achievement 
of  the road-holding model is to say that the change in orientation between successive 
whorls is such a measurement. To portray even more exactly the growth process, 
we could instead describe where on the old whorl is the point of attachment. Ideally 
we would like to judge this position in the same way as does the snail. However, 
this would effectively mean elucidating the developmental rules--rather  too much 
to expect of  routine taxonomy. 

Unfortunately , the spire's shape is not fully described by parameters such as the 
change in whorl orientation unless we measure also the starting conditions (for 
instance the initial orientation to the coiling axis), which can be measured only on 
sections that are laborious to grind down. And the one whorl which can be measured 
without sectioning, the last one, is the most untypical in its coiling parameters. It 
is easy to estimate Raup's  translation rate averaged over the whole shell without 
sectioning it, but this is impossible for the average change in whorl orientation. 
Arbitrary characters such as spire angle may reveal little about the growth processes 
but they can indicate whether patterns of  allometry differ overall. They represent 
simply aspects of  shape that are most apparent to us, and they may also be the 
characters of direct adaptive value. So, for practical purposes, we cannot always 
let theory restrict comparisons between shells to our new growth parameters. But 
recognition of  what sort of  parameters are under more direct biological control, 
will facilitate interpretation of  the measurements that we can make. 

I thank Professor J, D. Currey and Dr A. R. Ennos for commenting on drafts of this paper. 
The author was in receipt of a S.E.R.C. studentship. 
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