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When a female frog moves towards a calling male, the male may suddenly stop calling and
the female have to switch to another male. Analogous situations where ‘‘hunters’’ move
towards ‘‘targets’’ that can disappear unpredictably include predators stalking prey and
plants growing towards gaps in the canopy. I use dynamic programming to show that when
the hunter has a choice of such targets it is optimal to take a curved bet-hedging trajectory,
initially heading between two targets so that if one target disappears the other is closer. Also
hunters should prefer groups of targets, even if a solitary target is somewhat closer, because
it is unlikely that all targets in a group will disappear. Assuming that hunters follow these
optimal trajectories I then ask whether it will pay targets to form herds or leks. The extra
attractiveness of groups in this model turns out not to be sufficient to outweigh the advantages
of herding, but the net benefits of herding are considerably reduced.
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1. Introduction

The questions addressed in this paper were
initially motivated by the phonotactic behaviour
of female frogs and crickets towards males,
several of which may often be calling close
together. I consider how a female’s trajectory
might be directed and shaped to hedge her bets
in case the intended male disappears before he is
reached; such movement rules of the females
could also affect how males should space
themselves. Identical principles could apply to a
wider range of phenomena, including plant
growth and predators hunting prey, so to

emphasise the abstract ideas I first explain the
issues using a fanciful parable based on human
behaviour. Having then drawn comparisons with
real biological situations, I set out a simplified
model and calculate optimal behaviour under its
assumptions.

1.1.   

Imagine that there are two taxis on the far side
of a wide road, parked some distance apart
[Fig. 1(a)]. You need to catch one of them—it
does not matter which—but other people may
take one or both taxis before you have time to
reach either. Taxis thus disappear unpredictably.
My first question is what is your optimal
trajectory. Should you head straight for the
nearer of the two taxis, or should you initially
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F. 1. The taxi parable. (a) What is the customer’s optimal trajectory towards two taxis that someone else may occupy
at any time? (– – –) are alternative trajectories (straight or curved). If the left-hand taxi disappeared the customer would
head straight to the remaining taxi (. . .); (b) should the customer head for a pair of taxis even though a solitary taxi is
nearer?; (c) assuming customers behave optimally, should a taxi park next to another?
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head somewhere in-between them? The latter
course means that, if the nearer taxi disappears
before you reach it, you are closer to the second
taxi than if you had headed straight to the
nearer. This means being more likely to reach the
second taxi before it too disappears. On the other
hand, the curved trajectory takes longer, which
makes it more likely that the nearer taxi will
disappear before you reach it.

Consider now three taxis on the other side of
the street, one parked on its own, the other two
right next to each other [Fig. 1(b)]. My second
question is which taxi should you initially head
towards. There is an obvious advantage to going
towards the pair of taxis, since it is relatively
unlikely that both will have disappeared by the
time you get there. Nevertheless it may be best
to head towards the solitary taxi if it is much
closer than the pair. The optimal choice of target
should depend both on the positions of the
targets and on your own position.

The third question considers the optimal
behaviour of the taxis if they can rely on their
customers taking optimal trajectories. Imagine
two taxis parked some distance apart. Should
a third taxi park right next to one of these, to
form a pair, or should it park some distance
away from both [Fig. 1(c)]? The advantage of
forming a pair is that pairs should be more
attractive. The disadvantage is that any cus-
tomers attracted must be shared with the
‘‘partner’’. So for a partnership to be stable it
must attract at least twice as many customers as
a solitary taxi.

The organisation of this paper is to examine
and discuss each of these three questions in turn.
But first I discuss some biological examples
which have a structural similarity to the taxi
problem.

2. Biological Applicability

The key features of the taxi scenario are that
(1) the ‘‘targets’’ (taxis) disappear unpredictably
and independently of each other, and (2) the
‘‘hunter’’ (customer) knows the positions of the
targets and whether they are still there, but takes
time approaching them. These features are
shared by many species that call to attract mates,
in particular frogs and crickets.

Calling frogs and crickets, which are usually
the males advertising for mates, may disappear
acoustically for several reasons. They may be
killed by predators, they may start mating with
a female, they may be disturbed in some way, or
they may stop calling of their own accord,
perhaps to conserve energy. In some circum-
stances the disappearance will not be completely
unpredicted by the approaching female, perhaps
because she is aware of competing females. Nor
need the disappearance be totally independent
between neighbours, since a caller might time
any rests according to whether its neighbour is
calling, and since disturbances will often affect
neighbouring callers simultaneously. However,
there will often be an unpredictable and inde-
pendent component to when callers disappear,
and it is the consequences of this for the optimal
strategies that this paper is concerned to isolate.

Male frogs and crickets calling for mates are
often aggregated. The model that I develop
potentially might explain not only how females
approach these groups of males but also why
such groups form. For brevity I call these groups
leks, although some authors apply this term
more strictly.

Another comparable situation is of a predator
approaching prey, perhaps a cat in long grass
stalking birds in a flock, any member of which
may fly off spontaneously at any time. In other
situations prey themselves might be faced with
similar choices when fleeing from a predator
towards refuges such as holes in a coral reef; if
another fish occupies a hole first, the refuge is
suddenly no longer available. In plants and fungi
one might draw comparison with roots and
mycelia following nutrient concentrations to a
nutrient source, or shoots seeking an opening in
the canopy; either might be forestalled unpre-
dictably, particularly by a competitor getting
there first.

This paper is primarily concerned with
calculating the optimal behaviour of such
organisms faced with this situation of disappear-
ing targets. Because organisms like plants may
not have the sensory capabilities to achieve the
optimal strategy, I will also compare the
performance of several suboptimal strategies
that are generated by following simpler rules of
thumb.
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3. Assumptions of the Model

To isolate the principles involved in hunting
disappearing targets, the model makes the
following assumptions:

(1) the targets are stationary;
(2) the hunter knows the exact position of

every target;
(3) each target disappears with the same

constant probability, which is thus unaffected by
the behaviour of the hunter or of the other
targets. The hunter knows this probability;

(4) a target never reappears after disappear-
ance and no new targets appear;

(5) the hunter knows immediately when a
target disappears;

(6) all targets have the same value to the
hunter, or, equivalently, the hunter cannot
distinguish the value of a target before
reaching it;

(7) there is only one hunter, or hunters do not
compete or interfere with one another;

(8) the hunter stops after reaching a target, or
when there are no targets left. This and (7) imply
that hunters should maximise the chances of
reaching some target (rather than minimising the
expected time to reach a target);

(9) hunter and targets are situated on a flat
two-dimensional landscape.

Obviously in any real situation some of these
assumptions will be violated, but it is only by
investigating simple models that we learn
whether the principle is potentially sufficient on
its own to explain aspects of real behaviour. It
would be a mistake instead to start with a more
complete and complex model of, say, a cheetah
attacking a gazelle herd. Having started with
simple models we can subsequently relax
assumptions and introduce other factors one at
a time, to establish which factors have important
consequences and why. Section 9 discusses some
relaxations of the above assumptions.

4. Optimal Trajectories: Methods

I did not find it possible to calculate the
optimal trajectories analytically and so resorted
to the numerical technique of dynamic program-
ming. This technique is often used in behavioural

ecology when the trajectories are in a space of
states rather than position (Houston & McNa-
mara, 1988; Mangel & Clark, 1988). Applying
the technique to find optimal movement in space
proved not to be straightforward, and the
Appendix explains the successful approach in
detail.

5. Trajectory Shape

5.1.      

  

The optimal trajectory when two disappearing
targets are available is indeed a curved line
initially heading between the two targets (Fig. 2).
The hunters hedge their bets.

For hunters starting equidistant from the two
targets, as the probability of disappearance
increases the optimal trajectories become more
curved (compare the dotted and solid lines in
Fig. 2). Only at extremely high rates of
disappearance do trajectories again become
straighter, when hunters should ‘‘make a dash’’
for the nearer target (Fig. 3). But from more
asymmetrically placed starting points the trajec-
tories may consistently get slightly straighter as
the probability of disappearance increases
(Fig. 2).

Whatever the starting point, trajectory curva-
ture is surprisingly insensitive to the probability
of disappearance. Figure 3 shows how trajectory
length (a measure of curvature) depends on the
probability of disappearance for a hunter
starting equidistant from the two targets. Mostly
there is a roughly linear relationship between
trajectory length and the probability of disap-
pearance. This means that there is very little
difference in the shape of the optimal trajectory
when the probability of disappearance is low
even when this varies by a considerable factor.
The optimal trajectory does not converge to a
straight line (length=1) as the probability of
disappearance approaches zero.

The explanation for this insensitivity of
trajectory length is that as the disappearance
probability is reduced, a curved trajectory not
only less often has a benefit (the intended target
rarely disappears, and if it does the alternative
target will probably still stay there even if the



0.0 0.2 0.4 0.6 0.8 1.0

Probability of Disappearance

1.00

1.01

1.02

1.03

1.04

D
is

ta
n

ce
 o

f 
O

p
ti

m
a

l 
T

ra
je

ct
o

ry

=0

=0.0
5

=0.2

-    37

F. 2. Optimal trajectories from different starting positions around a semicircle towards two targets (w) that may
disappear. In this and subsequent figures the trajectories shown are when no disappearances happen to occur. Trajectories
from above would be a mirror image of those shown. Targets are 1 unit distance apart. For the (. . .) the mean rate of
disappearance of each target is 0.5 per unit distance, and for the (—) it is 0.05. A trajectory for a value of 0.005 would
be almost indistinguishable from the latter at this scale.

target switches direction to it from further away),
but also less often has a cost. The cost is the
increased chance that the nearer target disap-
pears because the curved trajectory takes longer.

This is the only cost in the model, but in real
life there will be other demands on an animal’s
time and/or a risk associated with being on the
move. To model these extra costs I tried

incorporating a small random chance of the hunt
being interrupted. Then trajectories are
straighter, and as disappearance probability
declines they do converge to a straight line (Fig.
3). Thus the model does not always predict that
trajectories will be noticeably curved.

5.2.     

   

Are real trajectories curved? Unfortunately I
found no systematic studies of the trajectories
followed by predators who already knew the
location of adjacent prey items, and most
mate-choice experiments on phonotactic animals
place them on a line between loudspeakers or use
a Y-shaped maze. However, some descriptions of
Orthoptera moving towards two loudspeakers
are encouraging: ‘‘the insect’s path is usually an
irregular arc’’ (Morris et al., 1978), and ‘‘some
continued to walk along the mid-line between the
loudspeakers . . . before turning’’ (Latimer &
Sippel, 1987). Bailey et al. (1990) figure some
trajectories; they are rather wiggley and difficult
to categorise, some curved very much like my
predictions but others more direct.

Unfortunately, asking merely whether real
trajectories are curved is not a very critical test
of my hypothesis. One reason is that, as noted
earlier, the model has only to include time
costs to predict much straighter trajectories.

F. 3. The length of the optimal trajectory as a function
of the probability of each target disappearing. The hunter’s
starting position is 1 unit of distance from two targets and
the targets are also 1 unit apart. Probabilities refer to the
time taken to move 1 unit. i is the probability that the hunt
is interrupted, in which case the hunter catches neither
target. (– – –) refers to the situation where i=0 and both
targets can be taken in succession; for the other lines only
one target can be taken.
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Conversely when curved rtrajectories are found,
there are several alternative explanations.

One such explanation for predators’ trajec-
tories is that they initially avoid heading straight
towards any particular individual in a herd
because this would warn the intended target that
it was at higher risk (Burger & Gochfeld, 1981,
1990). Non-straight trajectories can also be
optimal when the problem is to locate targets
(Benhamou, 1992). Interestingly, other expla-
nations are closely related to the present one.
The suitability or quality of a target may become
apparent only on closer or longer inspection, and
this source of uncertainty favours similar
bet-hedging trajectories as uncertainty about
disappearance (Hutchinson, unpublished). Thus
by initially heading between the targets the
hunter is closer to an alternative target if it
recognises that the chosen target is unsuitable,
and it may be able to compare target qualities
better. Another source of uncertainty might be

the targets’ precise locations. Thus if I allowed
the targets slow random movement, or let an
aerial hunter sometimes be displaced by unpre-
dictable gusts of wind, I suspect that the hunter’s
trajectory should again be curved.

Other explanations for curved trajectories are
based not on function but on following simple
mechanisms (e.g. Fraenkel & Gunn, 1961;
Helbing et al., 1997; Kennedy, 1983). I now
consider in particular two such mechanisms
which generate trajectories that superficially
resemble the optimal bet-hedging trajectories,
and which might thus make good rules of thumb
to approximate the optimal strategy. The next
section compares how well they perform. The
first simple mechanism is for a phonotactic
animal to step in the direction that most
increases the perceived volume of sound, i.e. to
follow the steepest intensity gradient. If the
signal from different targets is perceived as a
summed signal, this strategy produces the curved

F 4. Suboptimal trajectories towards two targets (w). (—) in (a) are for an animal taking the steepest gradient of signal
concentration, and in (b) for an animal using a triangle-of-forces rule (in both cases assuming that signals from the two
targets combine additively, and decay according to the inverse square law). (. . .) is the same optimal trajectory as is shown
dotted in Fig. 3.
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T 1
The length and success/failure probabilities of optimal and suboptimal trajectories

Trajectory length Probability Probability Probability no
Policy if no disappearance reach Target 1 reach Target 2 target reached

Optimal 1.018 0.601 0.208 0.191
Straight to nearest 1.000 0.606 0.201 0.193
Steepest gradient 1.309 0.539 0.253 0.207
Triangle-of-forces 1.342 0.533 0.257 0.210

Target 1 is at (−0.5, 0), Target 2 at (0.5, 0), and the starting position of the hunter is (−0.0001, z3/2).
The mean rate of disappearance for each target is 0.5 per time taken to move 1 unit.

trajectories in Fig. 4(a). A slightly different
trajectory results if the animal moves as if
attracted towards each target with a force scaling
as the inverse square of distance [Fig. 4(b)]. I
refer to it as the ‘‘triangle-of-forces’’ policy.
Fraenkel & Gunn (1961) discuss the simple
mechanisms by which animals can achieve such
trajectories. These two sets of trajectories differ
most from the optimal trajectories when the
starting position is nearly symmetrically placed
relative to the two targets (Fig. 4). Then the
suboptimal trajectories lie nearer the line of
symmetry and are longer (Table 1).

5.3.    

  

One consideration bearing on whether we
expect to observe the optimal policy is the cost
of not following it. In this section I compare the
performance of the optimal trajectories with the
performances of three sets of suboptimal
trajectories: going straight to the nearest target
and the two sets of suboptimal curved trajec-
tories just discussed (Fig. 4).

The cost of a suboptimal trajectory depends
on the starting position of the hunter. For
instance, if the hunter is collinear with both
targets the trajectories and fitnesses of all policies
discussed are the same. In contrast, Table 1
shows the proportion of times that neither target
is reached when starting just slightly nearer
Target 1 than Target 2 and at a distance from the
targets the same as the distance between the
targets. For this starting position and the
specified rate of disappearance the straight-line
policy fails 1.4% more often than the optimal
strategy, whereas the other curved policies fail 9
and 10% more often. The benefit in following the
optimal policy, whilst not huge, is thus not

trivial, and might plausibly be sufficient for
selection to dominate over drift. With other
starting positions the failure rates of the
suboptimal strategies can be in reverse order to
those in Table 1. The next section examines the
performance of optimal and suboptimal policies
when there are three targets.

6. Choice of Target when there are Three or
more Targets

So far I have considered only two equal
targets, so that which the hunter heads towards
depends simply on which is closer. With three
targets, however, there can be an advantage in
heading towards two targets that are close to
each other even if the more isolated target lies
closer to the hunter. The reason is that it is
relatively unlikely that both of two targets will
disappear. Figure 5 shows optimal trajectories
when two targets are coincident and a third on
its own. Hunters starting from point A should
move towards the pair of targets even though the
solitary target is closer. One can map out two
complementary ‘‘zones of attraction’’ describing
the hunter’s destination if no target happens to
disappear; the dashed line in Fig. 5 indicates the
boundary between these zones.

Surprisingly, the position of this boundary is
extremely insensitive to the probability that the
targets disappear (as long as this probability is
the same for all targets). However, this is
somewhat an artefact of the model assuming no
other advantages in getting to a target quickly.
If there is a small chance that the hunt is
interrupted, when no targets can then be caught,
the boundary of the zone of attraction is more
symmetrically placed, and now becomes more so
as the disappearance probability decreases.
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F. 5. Optimal trajectories (—) for different starting positions around a semicircle towards three targets (w). The two
targets on the right are shown slightly apart but are in fact coincident; (– – –) separates the zones of attraction of the two
target positions. The inner ring of numbers gives the probability of a hunter at that starting position reaching the solitary
target. The outer ring gives the probability of reaching each of the two coincident targets. The mean rate of disappearance
of each target is 0.1 per time taken to move a unit distance, where the target positions are 1 unit apart.

These zones of attraction are perhaps some-
what misleading, because when targets actually
do disappear the target reached may not be the
one in whose zone of attraction the hunter starts.
So it is also meaningful to calculate the
probabilities of reaching each target (for method,
see the Appendix), and these are shown adjacent
to the starting positions in Fig. 5. One use of
these probabilities is to integrate them over an
area around the targets and thus calculate an
overall probability that one target is reached
rather than another. This is the subject of Section
8 when I use such results to decide how targets
should move to increase or decrease their
probability of attracting optimal hunters.

Another informative analysis is to calculate
the probability that all targets disappear before
any of them are reached, in order to compare
how well suboptimal policies perform relative to
the optimal one. In Table 2 I consider the
suboptimal policies of (a) moving straight to the
nearest target, (b) following the steepest gradient
[Fig. 6(a)], (c) using a triangle-of-forces calcu-
lation [Fig. 6(b)], and (d) moving straight to
whichever position seems loudest [Fig. 6(c)].
Policies b, c and d assume that the hunter
combines the signal from different targets
additively, and thus two targets are more
attractive than one, whereas policy a is
unaffected by the number of targets at each

target location. Which suboptimal rules do best
depends on the starting position, so the
probabilities in Table 2 are averages over all
starting positions within the semicircle shown in
Fig. 6.

The right-hand column of Table 2 is the failure
rate for each strategy. The optimal strategy has
only a 1% lower failure rate than the strategy of
going straight to the nearest or loudest target
position, so these rules of thumb on average
perform well. The gradient and triangle-of-forces

T 2
The success/failure probabilities of optimal and

suboptimal trajectories
Probability Probability Probability

reach reach no target
Policy Target 1 Target 2 reached

Optimal 0.2763 0.2614 0.2009
Straight to nearest 0.2977 0.2499 0.2025
Steepest gradient 0.2803 0.2581 0.2035
Triangle-of-forces 0.2750 0.2605 0.2040
Straight to loudest 0.2598 0.2689 0.2024

Target 1 is at (−0.5, 0), Targets 2 and 3 at (0.5, 0). The
rate of disappearance for each target is 0.5 per time taken
to move 1 unit. Probabilities are averaged for 108 starting
positions within the semicircle shown in Fig. 6 [Q2.5 units
from (0, 0)]. For each starting position I calculate the
probabilities of reaching each target and of all targets
having disappeared before any is reached. The probability
of reaching Target 3 is identical to that for Target 2.
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F. 6. Suboptimal trajectories (—) towards three targets (two coincident and one solitary). (a) Gradient rule; (b)
triangle-of-forces rule; (c) straight-towards-loudest rule (in all cases assuming that signals from the three targets combine
additively, and decay according to the inverse square law); (– – –) separates the zones of attraction of the two target
positions; (. . .) are the optimal trajectories shown in Fig. 5.

strategies do slightly worse because they are too
curved. However, these results depend on the
disappearance probability and on the starting
positions considered.

7. Experimental Evidence of Preference for
Grouped Targets

The available data on the shape of
trajectories allowed only a weak test of the
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hypothesis. Another prediction to test is that
hunters will head towards a group of two
targets even if a solitary rival is closer. The
dashed line in Fig. 5 sets a limit to how much
further away the pair of targets can be before
they should cease to be preferred. For a hunter
starting on the straight line between the targets,
the solitary target should be preferred if it is
less than 0.66 to 0.67 as distant as the pair,
but these values can rise to 1 if there is a
high probability of interruption (or other extra
time costs). For the suboptimal rules shown in
Fig. 6 the corresponding values are 0.80
(gradient rule) and 0.71 (triangle-of-forces and
straight-towards-loudest).

Unfortunately I know of no direct manipula-
tions of the relative distances of the group
and solitary caller from the hunter’s starting
position. Instead all that the available data
test is the less critical prediction that when
starting equidistant from the targets a hunter
prefers the group. If a preference for groups
is found there are numerous other
explanations beside the one advanced here
(review in Höglund & Alatalo, 1995, p. 168).
Thus evidence that hunters prefer groups is
merely consistent with my hypothesis. However,
the evidence is worth examining because no
preference for a group would refute the
hypothesis for that species.

The best experimental evidence concerns
frogs and insects where the male calls to attract
a mate. Loudspeakers have been used exper-
imentally to remove confounding factors
present if real groups of males are used. Several
studies have shown that females do prefer
groups when the grouped and solitary loud-
speakers are equidistant (e.g. Morris et al.,
1978; Cade, 1981; Walker, 1983; Schwartz,
1994), and Cade showed this also for a
phonotactic parasitoid of a cricket. Other studies
did not get a significant difference (Otte &
Loftus-Hills, 1979; Shelley & Greenfield, 1991),
and Telford (1985) clearly showed that his frogs
preferred solitary loudspeakers.

8. The Stability of Groups of Targets

Now that we know for each starting point the
probabilities that a hunter behaving optimally

will attain each target, we can determine how
targets should space themselves. Prey should
arrange themselves to minimise the probability
of capture whereas males advertising for females
should maximise this probability. The problem is
game theoretic; the best position for one target
will depend on the positions of its neighbours.
The procedure that I use to test whether a
particular arrangement of targets is an evolution-
arily stable strategy (ESS) is to calculate an
overall probability that hunters take a particular
target, and then to ask whether a change in
position of any one target increases or decreases
the probability. This overall probability averages
over different possible starting positions of the
hunters.

8.1.  

Many benefits and cost of forming herds and
leks have been proposed (reviews in Bertram,
1978; Wiley, 1991; Höglund & Alatalo, 1995),
but there are two ideas in particular that are
required for the interpretation of this paper’s
results. The first is termed attack abatement
(Turner & Pitcher, 1986). The argument is that
(1) if a predator is less likely to find a single
group of prey than just one of the component
prey items had they been scattered singly (the
avoidance effect), and (2) if a predator attacking
a group is less likely to catch a particular
individual as group size increases (the dilution
effect), then prey should form groups. The idea
applies equally to females attracted to males,
where it would normally select against leks
forming. The opposite of the avoidance effect,
the effect that a group of animals is easier to
detect at a distance, has been used to explain
leks; but it is generally implausible that the
greater signal from a larger group outweighs the
greater chance of encountering these individuals
if they were dispersed (Bradbury, 1981). The
hypothesis that I am testing here is also that
groups of targets are more attractive, but not
because they are easier to detect.

The other main geometrical argument is best
known from Hamilton’s classic paper on
‘‘Geometry for the selfish herd’’ (1971). This
publicised a proposal of Williams (1964) that
animals in groups shelter behind their neigh-
bours. Animals on the edge of a group will be the
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first that predators encounter and they gain less
benefit from the group. But rather than
dispersing they should try to get closer to the
centre, and this process will thus make herds
coalesce. Note that animals on the edge are
sheltered on only one side, and whether this is a
sufficient advantage to make an edge position
preferable to being solitary depends on whether
groups are more likely to be attacked than single
individuals (Pulliam, 1973). Thus protection for
individuals on the edge is only through attack
abatement. As with attack abatement, the
sheltering principle applies equally to leks, and
makes them more difficult to explain.

8.2. 

I examine the situation where one target leaves
a group and I ask whether it is then more likely
to be taken by a hunter moving optimally than
if it had stayed in the group. This is similar to the
approach of Cannings & Cruz Orive (1975) who
examined several different movement rules of
hunters, including the triangle-of-forces rule.
Although this rule, like the optimal policy,
means that groups of animals are more attractive
than single individuals, Cannings & Cruz Orive
concluded that groups are still stable if hunters
are operating in two dimensions (although they
used an approximation which is not valid if
hunters can originate close to the targets). I take
the group size including the leaver to be three, as
this maximises the possibility that the leaver will
attract fewer hunters than if it had stayed. The
distance that the leaver moves away is envisaged
as small: on average a hunter would have to
traverse 20 times this distance before any
particular target disappears.

A hunter is considered to notice the targets
only if it lies within their ‘‘zone of influence’’.
(This zone is a property of the group, in contrast
with the term ‘‘zone of attraction’’ which
describes movement towards a specified target.)
In general we do not know from how far away
hunters will be attracted to the targets and nor
whether we should give more importance to
hunters starting close to the targets that thus
arrive early. So I ran the program with zones of
influence of a series of different sizes. I also used
two different configurations for the zones of
influence, either overlapping circles of the same

radius centred on each target, or a single circle.
In the former case a target leaving the group
automatically gains hunters through extending
the zone of influence to reach an unexploited
market of hunters. In the latter case the centre of
the circle is not moved when the target leaves, so
that the zone of influence remains unaltered. The
centre of this circle is put halfway between where
the two target positions will be after the leaver
has separated, which means that the leaver is in
a similar position relative to the outline of the
zone of influence both before and after it leaves.
This procedure may seem somewhat unrealistic,
but the aim was to eliminate the avoidance effect
(Turner & Pitcher, 1986, discussed above); with
the zone of influence fixed, any increase in the
leaver’s share of hunters cannot be through
recruitment from a previously unexploited
region.

I generate random starting positions within all
squares of a fine grid and if a point is within the
zone of influence I calculate the probabilities of
a hunter reaching each target. These probabili-
ties are calculated for over 5 million starting
positions and Table 3 gives the averages.
However, in the case when the leaver extends the
zone of influence, all these probabilities are
multiplied by the same factor as the increase in
size of the zone of influence. So another way of
viewing the figures is the expected number of
hunters arriving at each target if the mean
density of hunters is 1 per area of the original
zone of influence (i.e. before the leaver
separates).

For ease of calculation I assume that if the
hunter is within the zone of influence of the
group, it immediately is aware of all targets and
continues to react to all of the surviving targets
even if the only target within the critical radius
disappears. All three targets are present when
hunters start.

8.3.   

The first column of figures in Table 3, for three
coincident targets, shows that the expected
number of hunters taking each target is,
unsurprisingly, roughly one-third (a little less
because sometimes the target has disappeared
before a hunter arrives). The second column
shows that, regardless of how we define the zone
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T 3
Does leaving a group increase the number of hunters attracted?

Three targets coincident,
optimal= straight Leaver separate, Leaver separate,

Zone of influence trajectory optimal trajectory straight trajectory

(a) Circle round each target,
radius 2×separation of targets 0.333 0.547 0.623

(b) Circle round each target,
radius 16×separation of targets 0.306 0.335 0.361

(c) Single circle, radius 2×
separation of targets 0.333 0.402 0.478

(d) Single circle, radius 16×
separation of targets 0.306 0.323 0.350

(e) Sphere round each
target, radius 2×
separation of targets 0.333 0.535 0.623

(f ) Sphere round each
target, radius 16×
separation of targets 0.327 0.354 0.418

The expected number of hunters starting from within the zone of influence that reach the leaving
target either before or after it has left a pair of similar targets. The figures are based on a density
of hunters of 1 per area of the original zone of influence (i.e. before the leaver separates). When the
three targets are coincident the hunters’ optimal trajectories are straight lines. When the leaver has
separated I give results both when the hunters take optimal curved trajectories and when they take
suboptimal straight-line trajectories to the nearest target. The results depend on the size and shape
of the zone of influence; intermediate sizes were also investigated and gave qualitatively similar
results. The mean rate of disappearance for each target is 0.05 per time taken for a hunter to traverse
the same distance as between the two target positions.

of influence, when the leaver separates it is more
likely to attract a hunter. This implies that prey
should not leave the herd and that males
advertising for mates should disperse from a lek.
If there were more than three targets the
disadvantages to prey in dispersing, and to males
in grouping, would be even larger (because the
share of hunters before leaving is proportion-
ately smaller).

The increase in the leaver’s likelihood of
attracting a hunter is larger when leaving
increases the zone of influence (in Table 3
compare rows a and b with c and d). This is
because the extension of the zone of influence is
mostly in a region where hunters are much
nearer the leaver than the group. This effect can
be classed as a case of attack abatement (Turner
& Pitcher, 1986). However, in reality a single
individual might be less detectable than a group,
so the solitary leaver might not distort the zone
of influence in its vicinity as much. Nevertheless
even with the effect of attack abatement removed
(Table 3, rows c and d) the leaver gets more
hunters. The reason for this is that the leaver
puts itself nearer than the group to half the

hunters (the sheltering argument behind Hamil-
ton’s 1971 paper), and this outweighs its
reduction in attractiveness compared with the
group.

The increase in the leaver’s likelihood of
attracting a hunter is smaller when the zone of
influence is larger (in Table 3 compare rows b
with a, and d with c). This is because when the
zone of influence is large, most hunters start
from a long way off, and often in that case there
are only two targets left by the time the hunter
gets near, in which case its preference for a pair
of targets over a solitary target cannot be
expressed.

I have concluded that the increased attractive-
ness of a group cannot be an explanation of why
leks form or herds split up. But a comparison of
the second and third columns of figures in Table
3 shows that the leaver’s increase in hunters is
considerably less with the optimal trajectories
than with the straight. So the advantages of
forming a herd or splitting up from a lek are
considerably less than we would suppose under
the conventional assumption that hunters head
straight to the nearest target. This quantitative
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result is important because there are costs to
living in herds (e.g. competition for food), and
the reduction in benefits means that these costs
might start to predominate. A tendency for
hunters to bet-hedge might thus be a significant
contributory reason for looser herds, or tighter
leks.

9. Directions for Further Work

There are many ways in which this model may
be extended and made more realistic—almost
any of the assumptions listed in Section 3 could
be violated. I now consider a few such
modifications.

One assumption has been that the hunter is
concerned to reach only one target. If targets
could be taken one after the other, Fig. 3 shows
that the trajectories should be less curved,
particularly with low probabilities of disappear-
ance. When there is a choice between a group of
targets and a single target, the group should be
an even better choice than when only one target
could be taken.

I have assumed that hunters live on a
two-dimensional surface, whereas aquatic and
aerial species may occupy three dimensions. In
the examples analysed above the targets are
collinear, and in this special case the trajectories
used in three dimensions are the same as in two.
However, the extra dimension to the zone of
influence makes a difference to the averaged
probabilities of reaching each target. Lines e and
f of Table 3 give the results for three dimensions:
it still pays a prey item not to leave the group,
but the cost of leaving is a little less. Note that
Cannings & Cruz-Orive (1975) claimed that in
the three-dimensional case, with hunters follow-
ing the triangle-of-forces rule, grouping is
neutrally stable; in fact, bearing in mind the
approximation used, they should have concluded
that targets now attract fewer hunters by leaving
the group.

In many real examples hunters are competing
with one another because it is only the first
hunter to arrive that can eat the prey item or
mate with the male. Finding the optimal
trajectory is now much harder because the
optimal trajectory of one hunter depends on the
positions of its rivals, or, if these cannot be

directly observed, at least on the expected density
of the rivals and on how long they have all been
approaching the targets.

There are other reasons why policies of both
hunters and targets should often depend on time
as well as position. A group of targets occupying
one position will steadily deplete the local supply
of hunters, so at some stage it may be best for
targets to move on. Similarly, since it takes time
for females to approach, a male could be wasting
his energy calling continuously because the
audience has already heard his message. Indeed
male frogs and crickets often call intermittently
(e.g. Schwartz, 1994, and references therein). The
optimal behaviour of hunters would have to
adjust if targets can reappear as well as
disappear: females might then continue to head
towards a male that has fallen silent, but in other
circumstances may switch direction towards a
rival male that is still calling because they are
more certain of the latter’s continued presence.
Models could get very complicated, but a
message that I would emphasise is that in these
situations optimal timing cannot be understood
without an explicitly spatial perspective.

I have assumed that the hunters have complete
knowledge of the presence and locations of all
nearby targets. In fact our understanding of the
sensory physiology of some phonotactic animals
indicates that their knowledge is only partial.
For instance the central nervous system of the
bushcricket Tettigonia viridissima transmits only
the loudest sound source at each of its ears
(Römer, 1993). One way to elaborate my model
would be to incorporate such constraints;
different decision rules and trajectories will result
but the advantages in bet hedging will still
influence what parameter values are optimal.
Another way of saying this is that some rules of
thumb will perform better than others, as this
paper has demonstrated.

Lastly I would emphasise that I believe that
my models are testable empirically. In situations
where targets disappear unpredictably, do
hunters really bet hedge by taking curved
trajectories and do they prefer groups? The
theoretical results suggest that the advantage
for them to do so, whilst not negligible, is
not great. In my own behaviour in everyday
life and on the sports field I know that I
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personally do take bet-hedging trajectories, but I
hope that someone can demonstrate some other
examples.
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APPENDIX

A1. Backwards Problem

Consider initially that there are just two
targets, T1 and T2, at positions (xT1, yT1) and
(xT2, yT2). They disappear at a mean rate of pT1

and pT2, and have a value to the hunter of vT1 and
vT2. The expected reward of a hunter at position
(x, y) when both targets are available is written
as R11(x, y), when only the first remains as
R10(x, y), when only the second remains as
R01(x, y). The hunter gets no reward if no targets
remain, so R00(x, y)=0. R01(x, y) and R10(x, y)
are easy to calculate because the optimal
trajectory when only one target remains is clearly
a straight line and we merely need to calculate
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the probability that the target survives until the
hunter arrives. Assuming that hunters move 1
unit in 1 time interval,

R10(x, y)=

vT1 exp(−pT1z(xT1 − x)2 + (yT1 − y)2).

R11(x, y) can only be written down in terms of
the expected rewards at adjacent points. Con-
sider that the hunter is at position (x, y) and is
about to make a small straight-line step of length
s in direction u to (x+ s cos u, y+ s sin u).
While making this step, none, either, or both of
the targets may disappear, so the expected
reward is a sum of the expected rewards when
each possible combination of targets is still
present, weighted by the probability of the
relevant targets having, and not having, disap-
peared.

R11(x, y)=R11(x+ s cos u, y+ s sin u)

×exp(−s(pT1 + pT2))

+R10(x+ s cos u, y+ s sin u)

× exp(−spT1)(1−exp(−spT2))

+R01(x+ s cos u,y+ s sin u)

× (1−exp(−spT1))exp(−spT2) (A.1)

We already know the R10 and R01 terms.
R11(x+ s cos u, y+ s sinu) has to be interp-
olated from R11 at adjacent points, as I explain
presently.

I use the technique of dynamic programming
(McNamara & Houston, 1986; Mangel & Clark,
1988). Its essential principle is to work
backwards in time one step at a time, at each step
optimising the decision given the expected
rewards one step in the future. Its application to
two-dimensional spatial problems proved not
completely straightforward.

First a grid of points is superimposed onto the
landscape. For simplicity I position targets on
grid points. For grid points on which a target lies
we immediately know that the expected reward
is vT1 or vT2 [Fig. A1(a)]. I then estimate the
expected reward at the four nearest grid points
around each target [Fig. A1(b)]; I use eqn (A.1)
and assume that it is optimal to travel straight to
this target (s=1, u=0, p/2, p or 3p/2). From
now on, however, the optimal direction is

calculated by finding the value of u that
maximises the quantity in eqn (A.1), given
that the step size s=1. The R11(x+ s cos u,
y+ s sinu) term is estimated by interpolation
from adjacent points at which R11 has already
been estimated. Thus for the grid point
(xT1 −1, yT1 −1) diagonally adjacent to
target T1, R11(xT1 −1+ cos u, yT2 −1+sin u)
is interpolated from the values of R11(xT1, yT1),
R11(xT1 −1, yT1), and R11(xT1, yT1 −1), which are
the nearest grid points if 0E uE p/2. By finding
the value of u that maximises the quantity in
eqn (A.1), we simultaneously find the optimal
policy (direction to move) and the expected
terminal reward at (x, y) under the optimal
policy (the quantity maximised). Thus by
working outwards from points where the
expected reward is already estimated I can
estimate the expected reward at adjacent points.
Eventually the region for which there are these
estimates spreads over the whole grid (Fig. A1).

In fact I could have found these points
analytically up until the stage when the region of
estimates around one target expands to overlap
the region of estimates around another target
[Fig. A1(f)]. Until then the optimal policy should
be to head straight for the nearest target. After
that the optimal policy and R11 are influenced by
the position of both targets (which is the whole
point of the model). Consequently the optimal
policy and R11 at each point has to be
recalculated many times as the R11 of the
neighbouring points also change; the process
continues until successive iterations make little
or no difference to any of the values.

To my surprise it proved absolutely vital to use
quadratic, rather than linear interpolation to
calculate R11. (In fact I use quadratic interp-
olation on the logarithm of R11.) Consequently
R11 is influenced by five points in any quadrant,
and these five points will be different when
evaluating u in different quadrants around each
point. The problem with using linear interp-
olation is that it leads to false optima near the
transition from one quadrant to another (when
the points used for the interpolation change). I
instead tried fitting two-dimensional cubic
splines over the whole grid, but without success.

Unfortunately, when searching for u that
maximises expected reward there will often be
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F. A1. (a) to (f) show successive stages of the dynamic programming. The two w indicate target positions; W indicates
that the expected terminal reward and optimal direction have been estimated for that grid point.

several local optima (each usually corresponding
to heading in the rough direction of each of the
targets). It is not sufficient therefore merely to
use hill-climbing techniques, such as Newton’s
method, to find the optimal u in each quadrant.
Instead I initially test a range of values of u

(every degree or finer); then, starting at the value
of u that yielded the largest R11, I use Newton’s
method to locate the optimum more precisely.

We expect the optimal policy to be to head
somewhere between the targets, or straight
towards a target, but never away from all targets.
For many grid points, therefore, I can restrict the
values of u searched. Where possible I place the
grid so that the targets all have the same value
of y. I can then make use of the symmetry and
analyse a grid only half the size.

With three targets, the equivalent of eqn (A.1)
is more complicated as we need to calculate R111,
which is the weighted sum of R110, R101, R011, R100,
R010 and R001. Thus first it is necessary to work
out the optimal policies and expected rewards

when each possible combination of just two
targets survive (i.e. R110, R101, R011). Once these
values are known it is possible to work out R111.
Similarly one could build up to coping with more
targets.

Despite much involved book-keeping to
reduce the amount of calculation, finding the
optimal solutions over a 200 by 100 grid even in
the two-target case takes of the order of an hour
on a SUN workstation.

A2. Forward Problem

Having found the optimal policy (direction)
over the whole grid I can now run forward in
time to calculate optimal trajectories. The
procedure is simply to move one unit in the
optimal direction and then recalculate the
optimal direction at the new location. Generally
the new location will not be on a grid point so
that the direction is interpolated from directions
at the adjacent grid points.
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With two targets, and with particular arrange-
ments ofmore targets, there is a potential problem
at points symmetrically placed with respect to the
targets. The optimal policy is to go either left or
right. Isaacs (1965) calls such lines dispersal
surfaces. Careful programming is required to flag
such situations, otherwise one of the targets will
end up with an unfair share of hunters.

A related, and more troublesome, problem is
that interpolating optimal directions from a set
of grid points lying both sides of a dispersal
surface should be avoided (averaging a left and
a right turn results in the suboptimal policy of
moving parallel to the dispersal surface); instead
it is necessary to extrapolate from grid points on
the same side of the dispersal surfaces. In simple
cases this is achievable by recognising the line of
symmetry a priori. In more complex cases an
effective (but not infallible) method to recognise
points lying on different sides of the dispersal
surface is to test whether the trajectories from
them lead to the same target if there happen to
be no disappearances (for this preliminary
calculation interpolation across the unrecognised
dispersal surfaces will occur). A cruder approach
is simply to make the grid finer, which decreases
the proportion of interpolations that are
inappropriate.

From the optimal directions calculated at each
grid point it is thus possible to calculate an
optimal curved trajectory starting from any
point. One can either assume that no disappear-
ances actually happen to occur, or use random
numbers to simulate trajectories in which targets
do disappear with their prescribed probabilities,
so that the trajectories show sudden switches of
direction.

Averaging the outcomes of many such
simulations would estimate the probability of
each target being attained from a given starting
position. However, I use a more efficient method
to calculate these probabilities. Suppose that out
of three targets only Target 3 remains. The
optimal trajectory from any point (x, y) is then
a straight line and it is straightforward to
calculate the probability that Target 3 still
remains by the time the hunter reaches its
position; call this P[3=001](x, y) What I want to
calculate eventually is P[1=111](x, y), P[2=111](x, y)
and P[3=111](x, y), the probabilities that each target

is attained given that when the hunter was at
(x, y) all three targets were present.

The first step is to calculate and store values
of P[1=100](x, y), P[2=010](x, y) and P[3=001](x, y) for all
x, y. Then I consider the situation when two
targets remain, and follow the optimal trajectory
from each point when no disappearances happen
to occur. Along this trajectory I calculate the
probability that each target disappears between
the successive interpolations of a new direction.
The probability that over a distance D Target 3
disappears and Target 2 survives when only
Targets 2 and 3 remain at the start is written
Q[011:010](D). If Target 3 does disappear the
trajectory will change to a straight line, and one
can then calculate the probability that the
remaining Target 2 will not have disappeared by
the time it is reached. Rather than calculate this
directly, however, I interpolate it from the stored
table of P[2=010](x, y). The technique is to work
along the optimal trajectory when no disappear-
ances happen to occur, keeping a running score
of the probabilities that each target is the
destination if a disappearance were to occur.

P[2=011](xi , yi )=Q[011:010](Di)P[2=010](xi+1, yi+1)

+ Q[011:011](Di )P[2=011](xi+1,yi+1)

cP[2=011](x, y)= s
N

i=0

Q[011:010](Di )P[2=010](xi+1, yi+1)

+P[2=011](xN , yN ) t
N

i=0

Q[011:011](Di )

where Di =distance between (xi , yi ) and
(xi+1, yi+1), and P[2=011](xN , yN ) is 1 or 0 depending
on whether Target 2 is the end-point of the
optimal trajectory from (x, y) if there happen to
be no disappearances.

Having calculated the probabilities that each
target is attained given each possible combi-
nation of two targets remaining at the start, one
can then use the same principles to calculate
these probabilities given that all three targets
remain at the start. Now it is even more
important that one can follow a single trajectory
and calculate the consequences of a disappear-
ance by interpolation from a table, rather than
by having to follow the innumerable possible
branches of the trajectory.
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