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SUMMARY

We consider animals whose feeding rate depends on the size of structures that grow only by moulting (e.g.
spiders’ legs). Our Investment Principle predicts optimum size increases at each moult ; under simplifying
assumptions these are a function of the scaling of feeding rate with size, the efficiency of moulting and the
optimum size increase at the preceding moult. We show how to test this quantitatively, and make the
qualitative prediction that size increases and instar durations change monotonically through development.
Thus, this version of the model does not predict that proportional size increases necessarily remain
constant, which is the pattern described by Dyar’s Rule. A literature survey shows that in nature size
increases tend to decline and instar durations to increase, but exceptions to monotonicity occur frequently
– we consider how relaxing certain assumptions of the model could explain this. Having specified various
functions relating fitness to adult size and time of emergence, we calculate (using dynamic programming)
the effect of manipulating food availability, time of hatching and size of the initial (or some intermediate)
instar. The associated norms of reaction depend on the fitness function and differ from those when growth
follows Dyar’s Rule or is continuous. We go on to consider optimization of the number of instars. The
Investment Principle then predicts upper and lower limits to observed size increases and explains why
increases usually change little or decline through development. This is thus a new adaptive explanation
for Dyar’s Rule and for the most common deviation from the Rule.

…the widths of the head of a larva in its successive stages

follow a regular geometrical progression.

(Dyar 1890)

It is reasonable to assume therefore that molting in soft-

bodied insects is a device that allows them to increase the size

of their mouthparts and optimize their rate of feeding.

(Nijhout 1981)

1. INTRODUCTION

Arthropods and some other organisms grow dis-
continuously even if they are feeding more or less
continuously. For instance, a locust while feeding
accumulates reserves in its expandable abdomen, and
so the size of this storage organ and its overall mass
increase between moults ; but the dimensions of the
rigid pronotum and legs increase only at a moult
(Clarke 1957). Crucially for the argument in this
paper, many of the parts of the body involved in
acquiring food cannot stretch and therefore grow
discontinuously. Even in maggots and caterpillars,
which can swell considerably before moulting, the
sclerotized jaws grow only at the moult.

Besides mouthparts, other inextensible structures
may also affect feeding rate. Longer legs can increase
the area searched per unit time, and can reach farther
and subdue larger prey in raptorial arthropods such as
spiders, or can filter more water in filter-feeding
species. Longer antennae and larger eyes allow the
animal to detect food at larger distances, and increased
separation of such paired sensory organs can increase
the success of prey capture through improved distance
estimation. However, it is not always true that the size
of inextensible parts of the body limits the rate of
accumulation of reserves. For instance Reynolds (1990)
has evidence that mass increase in caterpillars in
culture is limited not by the size of the rigid jaws but by
the area of the gut, and this can increase continuously
between moults. But we suspect that in many
arthropods feeding rate indeed is constrained by the
size of structures that grow discontinuously, and this
paper restricts its scope to cases where this assumption
is justified.

The size of these structures that determine feeding
rate depends on how much they grew at the last moult,
which we suppose depends on how much reserves were
accumulated before that moult, which in turn depends
on feeding rate. This reciprocal influence of size on
feeding rate and feeding rate on size leads to a dilemma
that is the focus of this paper. Suppose for simplicity
that an arthropod hatches, accumulates reserves,
moults once (converting these reserves into a size
increase), accumulates reserves again at this larger size

(a)

(b)

Figure 1. Schematic representation of two growth strategies

in a hypothetical arthropod that moults twice before reaching

adulthood at a fixed time. Although mass accumulates

continuously through feeding, size increases only at the

moult, as a result of which subsequent accumulation of mass

is faster (graph has steeper slope). The longer spent in the

first instar, the more reserves have been accumulated by the

first moult and thus the larger the second instar (but the less

time available to feed at that larger size). Without specifying

more details it is unclear whether moulting early or late is the

best strategy.
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(and thus at a faster rate than before), and then
metamorphosizes when winter arrives (figure 1).
Reserves accumulated by the time of metamorphosis
determine future reproductive success. By moulting
later it would have longer to increase its reserves before
moulting, so that the size of the second instar would be
larger, and thus its increased rate of food acquisition in
the second instar would be greater. But by moulting
earlier it would increase in size earlier and thus its
increased rate of food acquisition in the second instar
would continue for longer. To summarize, it may
moult late to increase feeding rate more, or moult early
to increase its feeding rate for longer. This conflict
results in there being an optimal compromise in the
duration of each instar which will maximize size or
reserves at the end of the growing season.

For convenience we need a shorthand to refer to the
argument outlined above. An analogy can be made
with the owner of a small factory or shop who is
accumulating the profits in the bank. At some time it
will be best to sell the factory and use the sum realized
together with reserves in the bank to invest in new,
larger premises, which will produce profits at a higher
rate. Hence we name our explanation the Investment
Principle.

This paper investigates theoretically the optimal
moulting decisions that follow from the Investment
Principle. If these correspond to observed moulting
patterns, we can claim to have an ultimate explanation
for arthropod moulting decisions. We will first make
and test predictions about how instar durations and
size increases at each moult should change as an
animal grows. We then calculate how changes in
environmental conditions affect the optimal instar
durations and size increases (given various alternative
assumptions about how adult size and time of the final
moult determine fitness). Finally we consider what is
the optimal number of moults if each moult has some
cost in terms of increased mortality or loss of mass (as
ecdysed skin, etc.), and show how optimizing the
number of moults can generate Dyar’s Law.

We find optima in the simpler cases using analytic
solutions, but for more complex and specific cases we
rely on numerical solutions using dynamic program-
ming. Appendix 1 explains the principles. All computer
programs used in the project are available from
J.M.C.H.

It turns out that moulting decisions of real
arthropods do not always correspond closely with the
simplified versions of our model. Nevertheless, we
explore these simple special cases thoroughly before
incorporating real-life complications such as size-
dependent mortality. Only by comparing the output of
complex and simple models can we identify which
features of complex models are sufficient to explain
particular aspects of the patterns generated or
observed. Similarly only having first explained optimal
behaviour in simple models can we understand
intuitively why, when and how optimal behaviour
differs in more complex situations. Complex models
involve many extra parameters and these have not all
been measured in one species, so detailed predictions
about specific cases are not yet possible. The alternative

approach is to perform a laborious sensitivity analysis
by varying each of these parameters. The results are
easier to investigate and summarize if interpreted as
elaborations of the results from our simpler models,
where it is possible to derive analytically the precise
form of the interrelationships.

We hope that this paper will make empiricists aware
what parameters need to be measured in order to use
more complex models to test the Investment Principle
more rigorously.

2. EARLIER WORK

We define ‘growth ratio ’ as the size of one instar
divided by the size of the preceding instar, where size
is measured by a linear dimension. These growth ratios
were a hot topic in entomology during the first half of
this century. Most well known is Dyar’s Rule (Dyar
1890), which asserts that the growth ratio does not
vary between moults. Dyar, and many others after
him, used the rule to detect whether instars had been
overlooked in field collections (reviews in Gaines &
Campbell 1935; Daly 1985). Przibram & Megus) ar
(1912) made the further claim that the ratio was 1.26;
numerous other authors reported similar or contrasting
ratios in their favourite arthropods. Later work found
that the constant ratio may differ between different
parts of an animal (most thoroughly Brown & Davies
1972) and that the ratio was not after all so constant
between successive moults (e.g. Gaines & Campbell
1935). Experiments have examined the effect on
growth ratios and the number of instars of changes in
the environment, such as in crowding, food availability
or temperature (e.g. Sehnal 1966; Wigglesworth 1971;
Daly 1985), or of variation in size of the initial or an
intermediate instar (e.g. Tanaka 1981; Ebert 1994).
Also in a few species we have some idea of the
physiological mechanisms that regulate when to moult
(reviewed by Sehnal 1985) and of how the increase in
size of the exoskeleton is achieved (Bennet-Clark 1971;
Freeman 1990). However, little of this vast accumu-
lation of data was used to test any hypotheses to
explain particular moulting strategies.

This section discusses the explanations that have
been published. The first is that there are physiological
limits to growth. In particular, when arthropods moult
the new exoskeleton is preformed inside the old
exoskeleton; growth ratio is thus limited by the
extensibility of the new cuticle. Bennet-Clark (1971)
argues that extensibility is not fixed by some mech-
anical property of chitin, but by how much the
epicuticle is folded. It is unclear what are the limits to
epicuticle folding, and very high growth ratios can be
achieved by some species (e.g. Cole (1980) cites
examples of rigid head structures with growth ratios
" 2.0. Wing area can expand by a factor of 20;
Bennet-Clark 1971). Even if physiological constraints
do limit growth ratios in some species, the variation
observed between conspecifics reared in the same or
different conditions, between instars of the same species
and between closely related taxa, suggests that the
ratio is usually unconstrained. Physiological constraints
may be more important when considering how
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individuals respond to, say, an exceptional super-
abundance of food, but our model is concerned with
predicting optimal growth ratios, so we assume that
evolution has had the opportunity to shift the
physiological limits.

Other physiological constraints would arise if certain
simple developmental rules determine when the moult
occurs. For instance Przibram & Megus) ar (1912)
interpreted a 1.26 growth ratio as following from a
single cell division of all cells in the body, so that
volume doubled between moults. Bodenheimer (1933)
explained higher ratios as following from two or three
full divisions per moult, leading to ratios of 1.59 and
2.0, respectively. If instead the area of epidermis limits
expansion, a doubling of the number of epidermal cells
leads to a growth ratio of 1.41. Although ratios close to
these are found in particular species, within these
species there is much inter-individual variation
(Ludwig 1934) and histograms of growth-ratio vari-
ation between species show a broad spread rather than
sharp peaks (Cole 1980; Rice 1968). If other species
achieve these different ratios, these simple develop-
mental rules seem an implausible explanation even in
species with growth ratios close to 1.26 or 1.59.

In some bugs experiments have indicated that
moulting is triggered by a stretch receptor detecting a
critical food intake into the abdomen (Nijhout 1979).
In other species, Jones et al. (1981) suggested that the
mechanism controlling the timing of moult is some
comparison between the relative sizes of extensible and
inextensible structures ; this might also be mechanical.
Whatever the mechanism, it is tempting to suggest that
isometry is simpler to engineer, resulting in constant
growth ratios. But again an objection is that evolution
has managed to program changes in growth ratio in
many species.

One adaptive explanation for the constancy of
growth increments is that the size increase has been
selected to avoid competition between instars (Enders
1976). This is an extension of Hutchinson’s (1959)
suggestion that species of the same guild should differ
in size by at least 28% so as to avoid competition.
Typically, instars do differ by at least this amount.
However the empirical evidence for Hutchinsonian
ratios between species of a guild is now contested (e.g.
MacNally 1988), and if this pattern does occur there
are explanations other than competition (Eadie et al.
1987). Furthermore, Hutchinson’s original model was
too simplistic in predicting a regular spacing. For
instance, one might expect competition between
individuals of different sizes to be asymmetric, which
can result in niche overlap changing with size (Rummel
& Roughgarden 1985). Avoidance of competition
between instars of a single species would need to be
modelled as a dynamic game, and would often also
have to incorporate sib competition and competition
from other species. What we can suppose is that if some
instar sizes are advantageous for other reasons (e.g.
they maximize the growth rate), they should tend to be
more heavily occupied even at the expense of the
heavier competition (although this competition, by
making those sizes less attractive, may broaden the size
ranges occupied).

Enders (1976) suggested two further influences on
growth ratios, both concerning the consequences of
carrying around the reserves that will later convert into
a size increase. He argued that more active species and
those with a rapid escape response suffer from carrying
around reserves, and so should grow proportionately
less each instar ; comparisons between spider families
supported this hypothesis. Conversely, reserves can
have a beneficial side-effect, to stave off starvation if
food gets scarce. Both these costs and benefits should
scale with size, which could be a reason for growth
ratios to change with successive moults.

A different, but only partial, explanation for changes
in growth ratio is due to Klingenberg & Zimmermann
(1992). As an animal grows its optimal proportions
change (for instance because surface-to-volume ratio
changes). Any consequent allometry means that
growth ratios must differ between different structures.
Thus, a consistent decline in the growth ratio of head
structures was explained by their negative allometry
with respect to the legs and body. Growth ratios of the
latter were constant.

For completeness we mention also a paper by
Hutchinson & Tongring (1984). They argued that, for
a given arithmetic mean of the growth ratio, size at
final time will be maximized by having all the growth
ratios constant. This is true, but different strategies
with the same arithmetic mean growth ratio result in
growth to adulthood taking different times. If time to
reach adulthood is unimportant, it is unclear what
biologically constrains the arithmetic mean growth
ratio. In our model, time to reach adulthood is
important : reproductive value decreases with the time
taken and this restricts what growth ratios are
achievable. Hutchinson & Tongring (1984) have
nothing to say about this situation. We find that
achieving the maximum size within a particular time
usually does require growth ratios to differ between
instars.

Most of these earlier explanations are not incom-
patible with each other, nor with our own Investment
Principle ; what real animals do may be a complex
interaction of several factors. But our strategy is to
model only the Investment Principle, so as to isolate its
consequences. As it happens, when we allow the
number of instars to be optimized, the Investment
Principle not only gives rise to another explanation for
a pattern close to Dyar’s Rule, but also explains the
most common pattern of divergence from the Rule.

3. THE GROWTH EQUATION AND

FURTHER ASSUMPTIONS OF THE MODEL

We use the symbols introduced in this section
throughout the rest of the text. See table 1 for a
summary.

Throughout, our measure of the overall size of the
ith instar (x

i
) is proportional to the cube of the linear

dimensions of the inextensible structures (i.e. pro-
portional to volume, weight or calorific value, but
excluding reserves accumulated during that instar).
However, traditionally, size increase at a moult has
been expressed as a linear dimension of the new instar
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Table 1. Summar� of s�mbols used frequentl� in the text

i Number of the instar. The instar hatching from the egg has i¯ 0. For the adult i¯N.

N Number of juvenile instars (excluding the egg and adult stages)¯number of moults.

x
i

Size of the ith instar, where size is measured as volume, mass or calorific content of the body excluding the

reserves accumulated in that instar. Length of inextensible structures will be proportional to x"

$
i
.

x
!

Size of the initial instar after hatching from the egg.

x
N

Size of the adult.

u
i

x
i+"

}x
i
. It is the cube of the growth ratio of the moult at the end of the ith instar.

uW The value of u that our model predicts does not change each moult (see figure 2).

d
i

Duration of the ith instar (more strictly, the time spent feeding in that instar).

t
i

Calendar time at the beginning of the ith instar.

t
!

Calendar time of hatching from the egg.

t
N

Calendar time at which the adult appears.

ε Efficiency of moulting: the proportion of the mass of the old instar excluding accumulated reserves that can be

reincorporated into the next instar.

f A constant determining the availability of food.

α Scaling with size of the rate of reserve accumulation.

F(x, t) Fitness of an animal that becomes adult at size x and time t.

β Scaling with size of the rate of offspring production.

θ Instantaneous mortality rate when immature.

ρ Instantaneous mortality rate when adult.

divided by the same dimension of the old. Such ratios
of linear dimensions are easier to gauge intuitively than
ratios of volumes. Accordingly the growth ratios that
we present are based on linear dimensions and are
written as u

"

$
i
, where u

i
¯ x

i+"
}x

i
.

We term the growth equation the equation that
specifies size of the next instar (x

i+"
) as a function of size

of the previous instar (x
i
) and the duration of that

instar (d
i
). In particular we consider the following

example, which we call the power-law growth
equation:

x
i+"

¯ εx
i
f(x

i
}x

R
)α d

i
,

where ε and f are constants. x
R

is some reference size
and is present to ensure that the equation is dimen-
sionally correct. Henceforth we take x

R
to be equal to

1 in whatever units of size are used and thus we
abbreviate the equation to

x
i+"

¯ εx
i
fxα

i
d
i
. (1)

The two sections that follow explain the biological
significance of the two terms on the right-hand side and
then we consider to what extent this growth equation
is only an approximation.

(a) Efficiency of moulting

The parameter ε determines the efficiency of the
moulting process. More precisely it is the fraction of the
volume of the old instar that can be remodelled into the
new instar were the animal not to accumulate any
reserves between moults. Thus if ε¯ 1 no material is
wasted, and x

i+"
¯ x

i
if d

i
¯ 0. But at least the volume

of the ecdysed exoskeleton is lost, so we take typical
values of ε to lie between 0.2 and 0.9. The assumption
is that a constant proportion of volume (or mass) is lost
in the moult, whereas the loss might scale as a
proportion of surface area (x#

$), or as some other
function of x ; this would affect the quantitative

predictions that we make later. However, we now
present empirical evidence that the loss is at least
sometimes isometric.

One of us has published elsewhere details of an
experiment that enables calculation of ε (Vollrath
1983). Fifty-nine individuals of the large tropical
spider Nephila cla�ipes were followed in the laboratory
throughout their growth. We suppose that the
difference between the mass at the beginning of an
instar and the mass of the ecdysed skin at the following
moult is the amount of material present before reserve
accumulation that has been reprocessed. In animals
given a poor diet the mass of ecdysed skin scaled as the
1.04 power of mass at the beginning of the instar,
whereas in better fed animals the power was 0.83 (the
former coefficient is not significantly different from 1,
the latter differs from 1 at P! 0.001). With a poor diet
a mean of 0.77 of the mass at the beginning of the instar
was reprocessed (s.d.¯ 0.13); with a rich diet the
proportion was about 0.5 for the early instars,
increasing to about 0.8 at larger sizes.

Other data from the literature suggest that
approximate isometry of ε is the usual pattern.
Unfortunately, although the cost of the moult has often
been measured (e.g. Lynch 1989), usually mass loss at
the moult is given only as a proportion of total mass
after or before that moult, rather than just after the
preceding moult (which is how we define ε). Clarke’s
(1957) data on the decline in mass of a locust directly
after the moult imply a mean value of ε of 0.82 (s.d.¯
0.05) and no relationship with size. Przibram &
Megus) ar’s (1912) data on a mantid indicate a
proportionately lighter skin, with the mean value of ε
around 0.97, again independent of size. However, all
these figures probably overestimate ε because ecdysed
skins are likely to be energetically more expensive
mass-for-mass than whole bodies, because the latter
contain more water. (Typically dry weights of whole
bodies of insects are 0.2–0.4 of wet weights, whereas the
proportion is about 0.5 for the exoskeleton in insect
wings ; personal observation.) On the other hand,
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higher efficiencies are possible if the old exoskeleton is
eaten.

(b) Accumulation of reserves

The expression fxα

i
d
i
models the increase in mass of

the next instar caused by the accumulation of reserves
with the time spent in the instar (d

i
). We manipulate

environmental food availability in our model by
altering the constant f. xα

i
makes the accumulation of

reserves dependent on some power α of size.
α is roughly equivalent to the Van der Drift constant

(which describes how ingestion, rather than assimi-
lation, scales with size). In arthropods this typically lies
around 0.67 (see Peters (1983) and Reiss (1989) for
reviews; values ranged from 0.63 to 0.89 in the six
intraspecific studies on arthropods cited by Reiss).
Thus the empirical evidence is that assimilation rate
scales with size with an exponent less than 1. However,
we also make predictions for α greater than 1. Direct
empirical measurements of α are from rather few types
of arthropod maintained in the laboratory where food
is freely available. The theoretical arguments that
follow suggest that a wider range of values for α should
apply in the wild.

α may be considered as the sum of two components,
α
"

and α
#
: α

"
describes how food-gathering ability

scales with size given a constant concentration of food,
and α

#
describes how the concentration of food of a

suitable size scales. We expect α
"

to depend on the
mode of feeding. For a wolf spider waiting for prey to
enter its patch of forest floor, reach may determine
feeding rate, in which case α

"
¯ 0.33. α

"
¯ 1 might

apply for an animal in which the volume of its oral
cavity determined how much food it could gulp.
Values of α

"
higher than 1 could arise if interference

competition gave an extra advantage to larger indi-
viduals. As an example of how the mode of feeding does
affect α, Lampert (1977) found in Daphnia that α
increased from 0.67 to 1.0 if the prey species were large
or difficult to handle.

α will also depend on the availability of food suitable
for the different sizes. For a caterpillar eating leaves on
a tree, food seems freely available regardless of the
herbivore’s size (α

#
¯ 0), but for arthropods hunting or

filter-feeding discrete prey items the size range of
suitable prey changes as the arthropod grows. Suppose
that the concentration of food of the right size range is
proportional to the total biomass within this range.
Griffiths’s (1992) review of several studies found a
roughly linear decline of size-class abundances with
size, implying constancy of biomass (within a pro-
portional size range) with size. This pattern is also
usual for suspended particles in water (e.g. Sheldon et

al. 1972). Constancy of biomass with size could mean
that α

#
¯ 0, but if smaller items are not dropped from

the diet as the animal grows (e.g. for spiders using
webs; Vollrath, personal observation in Nephila), the
biomass available to a predator will increase linearly
with size, so that α

#
¯ 1, and thus α will be greater

than 1. In contrast, Stork & Blackburn (1993) found in
tropical forest that biomass within a size category
increased linearly with size (which could mean α

#
¯ 1,

or that α
#
¯ 2 if smaller items are not dropped from the

diet as the animal grows).
Besides α

"
and α

#
, other factors affecting α include

allometry in parts of the body that determine feeding
rate, and any tendency for time spent foraging to
change with size, perhaps because some sizes must hide
more from predators.

There is no guarantee that in real life these size-
dependent effects will be well-described by a single
power-law relationship. Our analytic solutions below
do depend on a power-law relationship, but the
numerical solutions by computer work with any
function of x

i
.

(c) Restrictions of the power-law growth equation

There is no term in the power-law growth equation
to describe the loss of reserves through metabolism.
Potentially this is a serious inaccuracy as typically
between 20% and 50% of assimilated energy is lost
through metabolism (Calow 1977; Schroeder 1981).
However, metabolic rate on average scales roughly
with mass!.(& (Reiss 1989), so that often the scaling
exponent will be very close to that for energy intake (α
C 0.67). Reserve loss can then be incorporated into
equation (1) merely by lowering the value of the
constant f. Note also that a considerable proportion of
metabolic costs is the chemical reactions that convert
assimilated food to tissue (Schroeder 1981); this
component of metabolism must scale as α (whatever its
value), so only the other proportion of metabolic costs
may scale with a different exponent.

In subsequent sections particular attention should
therefore be paid to our predictions for the case α¯
0.67, as this is both the case commonly observed and
the case where metabolic costs are likely to least affect
the simple power-law relationship. For comparison we
do include predictions for other values of α, when it is
more likely that we should have replaced fxα

i
in

equation (1) by a more complex function of x
i

incorporating metabolic costs. Unfortunately we could
not then have derived analytic solutions. We do check
numerically how sensitive some of our predictions are
to incorporating a metabolic cost scaling differently to
intake rate.

The accumulation of reserves in our model is
deterministic. As there is, therefore, no risk of star-
vation, the animal has no need to keep some reserves
until after the moult ; all reserves are converted into a
size increase. Equation (1) will not fit unless any
reserves carried over increase isometrically with body
size of the new instar. In specific cases a stochastic
model may be necessary to understand properly how
size increase and reserves are traded off depending on
the animal’s estimate of future feeding success.

We do not allow feeding rate ( f) to be a function of
time of year. Obviously this is usually an unrealistic
simplification. We also do not allow feeding rate or the
efficiency of the moult (ε) to depend on the instar,
which may be unrealistic when different instars show
allometric changes in shape or habitat shifts (in-
dependent of any size effects). Nutritional requirements
may have complex dependencies on instar (e.g.
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Simpson & Simpson 1990) that we have not allowed
for in our analysis. As discussed above, we ignore any
direct effect of current reserves on the further ac-
cumulation of reserves.

In our model moulting can occur at any time of day.
Jones et al. (1981) show how for physiological reasons
moulting in a lepidopteran caterpillar occurs only at a
particular time of day. This phenomenon may be
widespread, as arthropods are vulnerable when
moulting both to predation and to dehydration; it
must often pay to coincide moulting with relatively safe
or humid times of day. If the time of day that moulting
occurs is absolutely constrained it is straightforward to
simplify out numerical technique to find on which day
moulting is optimal (see Appendix 1). Our analytical
solutions will then be only approximations. The
optimal policy under this constraint is potentially
rather unstable, as a small change in ecological
parameters may lead to spending an extra 24 hours
feeding in an early instar, which will have knock-on
effects on how long to spend in all subsequent instars.

Moulting in our model is instantaneous, whereas in
reality it uses up time that might alternatively be spent
feeding. When we allow the total number of moults to
be optimized, the effect of a time penalty on moulting
is then obviously to decrease the optimum number.

During growth the animal may be subject to
mortality. Our simplest model copes only with mor-
tality that is unchanged by any moulting decision, for
instance if animals die at a constant rate. We never
consider mortality to be a function of energy reserves or
of instar. However, we do sometimes allow mortality to
vary as a function of size (in spiders, for instance, both
a decline in the rate of mortality with size and
independence have been reported; Tanaka 1992). One
of the most dangerous times for many arthropods is the
moult ; we thus sometimes allow an extra source of
mortality each time the animal moults.

Another assumption is that no reproduction occurs
until the final moult, which is true for insects and
spiders, but untrue for those crustaceans that exhibit
indeterminate growth (in their case the model still
applies for those moults before reproduction starts).
We discuss later the factors that affect reproductive
success after the final moult.

In a later section we suppose that not only the
durations of each instar, but also the number of moults
are optimized according to the Investment Principle ; a
pattern of growth close to Dyar’s Rule is then
predicted. However, the next four sections do not
assume that the number of moults optimizes growth;
these results apply generally whether the number of
moults is optimized or not.

4. OPTIMAL GROWTH RATIOS AND

DURATIONS OF SUCCESSIVE INSTARS

In this section our optimization criterion is that
adult size is maximized given that a specified time is
available for growth. This is equivalent to minimizing
the time taken to reach a specified size. (These criteria
are not appropriate if mortality during growth depends
on size.)

Given the power-law growth equation (equation
(1)) we have managed to express how much an animal
should grow in one instar as a simple function of how
much it was optimal to grow in the previous instar.
Appendix 2 gives the derivation and here we merely
explain the results.

Let u
i
be the cube of the optimal growth ratio at the

moult following the ith instar (u
i
¯ x

i+"
}x

i
). The

relationship between the optimal value of one growth
ratio and the optimal value of the preceding growth
ratio is that u

i+"
¯ g(u

i
) where g is the function defined

as

g(u)¯ ε(uα®ε)}α. (2)

The relationship between u
i+"

and u
i

is thus
independent of the food available ( f), the size of the
first instar (x

!
), the total number of instars (N), and the

time and size at which it is optimal for the animal to
switch from growth to reproduction (t

N
and x

N
). But

although these parameters do not affect the relation-
ship between successive growth ratios, they do affect
the actual growth ratios themselves. For instance,
increasing f will typically lead to the animal maturing
at a larger final size ; therefore all u

i
’s will have

increased. Nevertheless, given u
i
, ε and α, u

i+"
will be

the same regardless of the other parameters ; this
enables us to make very general predictions about how
growth ratios will change as an individual grows.

Similarly we can also make general statements about
how durations in each instar change as an individual
grows, since under the optimal policy

d
i+"

}d
i
¯ (1}α)(u

i
®εu"−α

i
)}(u

i
®ε).

How u
i
and d

i
change with i depends on whether α is

equal, less than, or greater than 1.

(a) Results when α¯ 1

In this case Dyar’s Rule holds true: growth ratios are
the same at all moults (u

!
¯ u

"
¯…¯ u

N−"
). Also the

duration of each instar is constant (d
!
¯ d

"
¯…¯

d
N−"

).

(b) Results when α! 1

Remember that the empirical data suggest that this
is the normal situation. How u

i
changes with each

moult is shown in figure 2a. Given a value of u
i
on the

horizontal axis one can use the curve u
i+"

¯ g(u
i
) to

read off the value of u
i+"

on the vertical axis. The
straight line u

i+"
¯ u

i
is also drawn so that the value of

u
i+"

can be readily relocated on the horizontal axis (so
as to calculate by the same process the value of u

i+#
). In

figure 2a the only changes of parameters for the two
sequences of u

i
s are in the food availability ( f). It will

be seen that, depending on f, u
i
s may either increase or

decrease through development, but always converge
towards the same value. As f is increased, typically it is
optimal to mature at a larger size (see later), so all u

i
s

must be larger. Consequently for small f growth ratios
are small and increase through development whereas
for large f they are large and decrease.

It is a general result when α! 1 that u
i
s will
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(a) (b)

Figure 2. The line u
i+"

¯ g(u
i
) shows how the growth ratio at one moult (u"

$
i+"

) relates to the growth ratio at the

preceding moult (u"

$
i
), if both are optimal. To find the next growth ratio, the value of u

i+"
is relocated on the horizontal

axis by means of the line u
i+"

¯ u
i
. (a) applies to the power-law growth equation when α¯ #

$
and ε¯ 0.5; two

sequences of u
i
are indicated with dotted lines (the reading off of successive growth ratios is shown in more detail for

the left-hand example). For both sequences 25 days are available for growth, x
!
¯ 1 g and five moults are used, but

for that on the left-hand side f¯ 0.6 g}day, whilst for that on the right f¯ 1.1 g}day. It is apparent that all sequences

of growth ratios converge towards uW "$. In (b), α¯ %

$
and ε¯ 0.5, and for the single trajectory shown f¯ 0.25 g}day,

again with 25 days available, x
!
¯ 1 g and five moults used; growth ratios diverge from uW "$ for all u

i
1 uW .

Table 2. Values of u# "$, for different combinations of groWth

parameters

(uW is the root of equation (2) and is the value of u which will

not change from instar to instar under the optimal policy. uW
does not exist for α¯ 1 because in that instance any value of

u can be the same for all instars.)

ε

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.33 1.303 1.286 1.268 1.247 1.224 1.197 1.164 1.120

1.00 — — — — — — — —

0.67 1.453 1.426 1.398 1.366 1.331 1.290 1.240 1.173

0.33 1.661 1.622 1.579 1.532 1.479 1.419 1.346 1.248

converge to a particular value with successive instars.
This particular value, which we call uW , depends only on
α and ε (it is the root of the equation u¯ g(u)).
Exceptionally, u

!
¯ u

"
¯…¯ u

N−"
¯ uW (Dyar’s Rule

obeyed), but otherwise either all u
i
s are greater than uW

and decrease each moult, or all u
i
s are less than uW and

increase. Table 2 shows the values of uW for different
combinations of α and ε. The values typically lie within
the range of growth ratios observed in the wild (Rice
1968; Cole 1980), so we expect both increases and
decreases in growth ratio to occur.

Whether or not u
i
! uW , instar durations should

increase with successive instars.

(c) Results when α" 1

Figure 2b shows this situation, in which u
i
s now

diverge from uW . If any u
i
is greater than uW , u

i
increases

each moult ; if any u
i

is less than uW , u
i

decreases.
Durations of successive instars now always decrease.

(d) How much does optimizing growth ratio and

instar duration matter?

Here we investigate numerically the effects on fitness
of following Dyar’s Rule when this policy is not
optimal. To do this we considered a range of values of
α (0.33®1.33) and of ε (0.2®0.9) but in all cases we
adjusted f (food availability) so that the animal took 25
days to achieve a linear size increase of a factor of 5
using five moults. These arbitrary, but not unrealistic,
combinations of parameters produced some sequences
of u

i
that decreased with successive moults and some

that increased, and some of the changes in u
i

were
appreciable. This is shown in table 3 along with the
range in instar durations. We then altered the policy so
that growth ratios were constant and examined both
the size attainable if the same time was available (25
days) and the time necessary for the same size increase
to be achieved (¬5). These suboptimal size increases
and times to reach maturity are given in table 3 as a
percentage change from those attainable using the
optimal policy. We similarly evaluated another sub-
optimal strategy, that of spending equal times in each
instar.

The most striking result is that equalizing instar
durations is in all cases far worse a policy than
equalizing growth ratios. Dyar’s Rule is most costly
when α" 1, but this pattern might change if we chose
a different overall growth increase, number of instars
or time available.

Not surprisingly, the Dyar’s Rule policy reduces
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Table 3. Performance of suboptimal policies

(For each different combination of growth parameters (α and ε), u"

$

!
… u"

$

%
and d

!
… d

%
are the ranges of growth ratios and instar

durations under the optimal strategy. The number of moults is fixed at five (this is why one growth ratio is less than 1). Food

is adjusted so that it takes 25 days to increase in linear dimensions by a factor of 5. The last four columns quantify the

performance of two suboptimal strategies by the percentage change in adult size if 25 days are still available (∆x
&
%), and by

the percentage change in time necessary to reach the same size as the optimal strategy reached in 25 days (∆t
&
%).)

optimal strategy u
i
s equal d

i
s equal

α ε u"

$

!
…u"

$

%
d
!
…d

%
∆x

&
% ∆t

&
% ∆x

&
% ∆t

&
%

0.33 0.8 1.429…1.353 1.09…11.81 ®0.09 0.07 ®15.74 12.96

0.33 0.5 1.138…1.516 0.44…14.59 ®2.32 1.56 ®37.46 38.12

0.33 0.2 0.923…1.644 0.24…16.07 ®8.27 5.58 ®55.19 71.81

0.67 0.8 1.460…1.321 3.02…7.43 ®1.11 0.52 ®6.06 2.93

0.67 0.5 1.389…1.373 2.44…8.48 ®0.01 0.01 ®14.67 6.97

0.67 0.2 1.322…1.422 2.07…9.22 ®0.52 0.21 ®24.96 12.11

1.33 0.8 1.305…1.478 6.80…3.44 ®7.83 1.61 ®10.62 2.13

1.33 0.5 1.325…1.452 7.45…3.03 ®4.68 0.75 ®24.08 4.19

1.33 0.2 1.345…1.427 7.94…2.74 ®2.18 0.27 ®41.04 6.53

fitness little when the optimal policy entails little
change in growth ratio anyway. A 1% reduction in
final volume as a consequence of using Dyar’s Rule
seems not untypical, which could easily translate into a
similar reduction in fitness. If there were another
strong selective pressure for Dyar’s Rule to be followed
we could not expect the Investment Principle to resist
it, but otherwise this 1% reduction in fitness would
mean that observed moulting strategies evolve away
from Dyar’s Rule.

Equally importantly, the constant-duration results
demonstrate that the Investment Principle can put up
a stronger selective pressure against certain other
moulting patterns. These could include those favoured
by the other adaptive explanations reviewed earlier.

5. TESTING PREDICTIONS ABOUT CHANGE

OF GROWTH RATIO WITH SUCCESSIVE

INSTARS

The essential thesis of this paper is that growth ratios
optimize the conflicting advantages, when feeding rate
is size-dependent, of moulting early or of moulting to a
larger size (the Investment Principle). To test this
general prediction would require establishing exper-
imentally the growth equation, and also how mortality
varies with size ; optimal solutions could then be
calculated and compared with observed growth ratios.
Unfortunately the necessary parameters have not been
measured; we hope this paper will inform empiricists
that they are important parameters worth measuring.
In the absence of direct measurements of the growth
equation, we restrict ourselves to testing the predictions
that rely on the additional assumptions that mortality
is size-independent and that the growth equation is a
simple power-law relationship of the form of equation
(1) (α and ε constant ; f can vary between individuals
but not between instars). Real relationships will never
be that simple, but it is worth asking whether these
equations are a good enough characterization to
produce predictions that resemble reality.

(a) Tests on populations of identifiable individuals

In Appendix 3 we develop a statistical test of
whether the size increases in successive moults are
compatible with our predictions. The test can best be
explained by considering a plot of the cube of the
observed growth ratio for one moult against the cube of
the growth ratio for the preceding moult (u

i+"
versus

u
i
). Through this scatter of points we then fit a curve

that relates u
i+"

and u
i
according to the relation given

in equation (2). The shape of the curve is determined
by the values of α and ε ; these are estimated from the
data so that the curve is the best least-squares fit. Our
prediction is that single values of α and ε (i.e. a single
curve) fit the scatter of points not significantly worse
than if two or more such lines are fitted. For instance,
one might try fitting separate lines for each instar, or
for each sex, or for different diets. Whether such
variation in α and ε significantly increases the fit can be
tested by the usual F-test procedure familiar from
analysis of variance.

As an example we show data gathered from 30
female spiders (Nephila cla�ipes) reared in the laboratory
(see Vollrath 1983). Note that according to our
hypothesis there should be no problem combining the
data from individuals that differed in the number of
instars they passed through, either because some
matured at an earlier instar or because some were
killed off early. The single line through the whole
dataset corresponds to a value of α¯ 0.52 and of ε¯
0.68 (figure 3). These seem plausible values, and the
value of ε is similar to the values that we estimated
earlier directly (from the weight of the ecdysed skin).
However, the fit improves significantly by allowing α
and ε to differ between individuals reared on rich and
poor diets. Generally our interpretation of such non-
agreement would not be that α and ε do necessarily
differ between these categories, but that the assump-
tions of the model may be not met in some more
fundamental way. In this case we know that ε really
does differ between diets, but also that with a rich diet
the assumption of ε being independent of size is
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Figure 3. Growth ratio$ for one moult plotted against that for

the preceding moult. Data are from 12 female Nephila cla�ipes

fed a poor diet (closed circles) and 18 females fed a rich diet

(open circles). The line is of the form given in equation (2)

with the parameters α and ε chosen to optimize the fit.

violated. Once differences in diet are allowed for, no
further significant improvement in fit is possible by
allowing different values of α and ε for each instar. This
agrees with our model, but the fitted values of α and ε
for the poor diet are not realistic.

Another dataset from the literature (Przibram &
Megus) ar 1912) agrees less well with our model : the
plot of u

i+"
versus u

i
indicates a negative relationship,

which the model never predicts. However, a negative
relationship could arise from measurement error in the
size data (too high a value for x

i+"
will inflate u

i
and

deflate u
i+"

), or if individuals sometimes hold reserves
over at one moult to use in the succeeding moult. This
negative relationship also occurs in Galleria, where
Sehnal (1985) explained it as a consequence of
moulting being possible at only one time of day.

(b) Tests on data pooled over a population

A more qualitative prediction from equation (2),
which can be tested against a wider range of species
using published data, is that changes in growth ratios
in successive moults should be monotonic (i.e. u

i
should

never increase then decrease with i, or vice versa). We
predict monotonicity also in the durations of successive
instars.

To avoid our selection of studies being biased, we
used the same dataset as Cole (1980) when he
calculated growth ratios averaged over all instars, but
we discarded data on many of the species. Table 4 gives
our rules for excluding data, and we discuss here the
general problems with such datasets.

Unfortunately most papers give only the mean and
standard error of the size in each instar, not of the
growth ratio (individual growth ratios are unobtain-
able when animals are field-sampled or have to be
killed to be measured). Consequently we have to

Table 4. Consistenc� of direction of change in groWth ratio and

instar duration

(If there are good data on N consecutive moults, the number

of possible comparisons between consecutive moults is n¯
N®1. Thus k, the number of consecutive instars for which an

increase in growth ratio or instar duration is observed, must

lie in the range 0% k% n. The tables show the numbers of

species with k increases out of a possible n. Growth ratios

increased in 39 out of 112 comparisons, and there was a

significant lack of species in which increases exceeded

decreases (P¯ 0.014). Instar durations increased in 66 out of

95 comparisons, and there was a significant excess of species

in which increases exceeded decreases (P¯ 0.002).

Data are based on studies listed in Cole (1980). We

excluded data in which generally less than 10 specimens were

measured in each instar, in which the dimensions of more

than the first two instars were reported to less than 3

significant figures, and in which durations were reported to

less than 2 significant figures. Only one species per genus was

included, and one sex, morph or diet (where these were

separated) per species ; the one included was chosen because

of a more adequate sample size, larger dimensions or smaller

durations, but bearing in mind also any data given on

standard errors. Where data on more than one dimension

were available we used that of the largest structure that was

unlikely to stretch between moults. If the sex or morphs were

split only at a late instar, comparisons that would be affected

(see text) were not made. Otherwise all instars were

considered, except the last when this had not been measured

or when a metamorphosis had occurred. Ties scored as a half

in each adjacent category.)

(a) Number of species With k increases in groWth ratio

k

n 0 1 2 3 4 5

5 0 1 0 0 0 0

4 2 5 2 1 0

3 4 11 3 0

2 1 2 2

1 0 3

(b) Number of species With k increases in instar duration

k

n 0 1 2 3 4 5

5 0 0 0 0 1 1

4 0 1 7.5 4.5 4

3 0 1 1.5 0.5

2 0 2 2

1 0 1

estimate the mean growth ratio as the ratio of the mean
of consecutive sizes ; the standard error of the growth
ratio is impossible to calculate, so parametric statistics
are not applicable. (Even when growth ratios are
calculated for each individual, it is theoretically
possible for growth ratios to increase with successive
moults in every individual and yet for the mean growth
ratio not to show a monotonic increase ; but this is
likely to be a much more minor problem.) The
accuracy of the growth ratios is often more seriously
affected by sizes being given to an insufficient number
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of significant figures and this is the commonest reason
for excluding datasets from our analysis. Another
problem when using data pooled over a population is
that usually the sexes can be identified in only the last
few instars. Frequently it is apparent that the smaller
sex is exhibiting smaller growth ratios, but when
comparing mean size of an instar that can be sexed
with size in an instar that cannot, the growth ratio of
the smaller sex is artificially deflated (because mean
size of the earlier instar is inflated by the inclusion of
the larger sex). This artificially low figure may
interrupt an otherwise monotonic trend. The same
problem occurs when species are polymorphic in
whether the adult is winged or in the number of instars
taken to mature.

If readers with their own data wish to test trends
with more rigorous statistics, we draw attention to the
use by Klingenberg & Zimmerman (1992) of geometric
means and confidence intervals calculated by bootstrap
techniques. Solow & Faber (1995) give a procedure
based on likelihood ratios for testing whether two
instars differ in size by a particular ratio. Also relevant
are procedures used to test the constancy of
Hutchinsonian size ratios between species in a guild
(e.g. MacNally 1988).

Table 4 presents the result of our survey. Decreases
in growth ratio and increases in instar duration
predominate. The former has been realized before (e.g.
Gaines & Campbell 1935), but the more consistent
lengthening of instar duration, although commented
on in particular contexts (e.g. in Daphnia ; Lynch 1989),
seems not to have been recognized previously as a
general phenomenon. Indeed authors still cite
Richards’s (1949) claim that instar durations are
normally equal and that it is slight deviations from this
pattern that give rise to deviations from Dyar’s Rule
(Richards’s misconception derives from plotting
straight lines through points that obviously fit a curve;
his data, too, show instar durations increasing!). A
frequent exception to the general lengthening of
durations is that the first instar lasts longer than the
second (in 13 of 25 species duration decreases from the
first to second instar ; only 3 of 25 species show more
decreases than increases in subsequent instars ; P¯
0.005 if the comparison had been a priori). In some
cases the long first instar may be because these larvae
do not feed for the first day or two after hatching (e.g.
Peet 1979). The fact that growth ratios decrease whilst
instar durations increase implies that the scaling
coefficient α is usually less than 1. This follows
regardless of whether the Investment Principle is
determining instar durations and growth ratios.

Our expectation was that the distributions in table 4
should be U-shaped, with most species showing
monotonic decreases or monotonic increases. In fact
the tendency for growth ratios to decline and durations
to increase means that one half of the U is missing.
With the half that is left it is impossible to distinguish
between two possibilities : that increases and decreases
show no pattern and occur at random, although one is
more common than the other ; or that a monotonic
change is usually what is underlying the data, but that
special circumstances, noise and measurement error

mean that there are frequent exceptions to this rule.
Measurement error is particularly disruptive of mono-
tonic trends. For instance, an apparent increase in
instar duration followed by a decrease could be an
artefact caused by an overestimation of the duration of
the intermediate instar.

Nevertheless we conclude that real exceptions to a
monotonic change in both growth ratio and instar
duration are probably not uncommon. This disagree-
ment with our predictions may be because the
Investment Principle is not important and is swamped
by other considerations. However, in the next section
we consider how dropping the simplifying assumptions
in our model can generate non-monotonic patterns
without changing the basic principle of our expla-
nation. It is also only fair to point out that most other
conceivable explanations for growth ratios and instar
durations would probably also tend to predict that
they change monotonically if at all, so it would also be
necessary to elaborate these explanations to accom-
modate the facts.

6. EXPLANATIONS FOR NON-

MONOTONICITY IN GROWTH RATIOS

AND INSTAR DURATIONS

Two quite likely explanations are available to
explain non-monotonic patterns without contradicting
the essential principles of our model : the power-law
relationship of equation (1) may be an inadequate fit
over the full size range, or mortality may depend
strongly on size. We now consider the kinds of growth
trajectories that can result when these complications
are incorporated (for these cases we found the optima
numerically ; see Appendix 1).

(a) Other growth equations

So far we have assumed that metabolic rate scales
with size with an exponent similar to the scaling of
energy assimilation. Now we assume that metabolic
rate is proportional to x!.(&, but that assimilation rate
is proportional to either x!.'#) or x!.)(#. These exponents
were chosen so that over a fivefold change in linear
dimensions metabolism either increases from 25% of
energy assimilated to 45%, or decreases from 45% to
25%. Observed values for the proportion of assimilated
energy used by metabolism typically range from 20%
to 50% between different species (Calow 1977;
Schroeder 1981), so our 20% changes within a single
individual seem quite extreme. To investigate the
consequences of these growth equations we put ε equal
to both 0.3 and 0.8, varied x

!

"

$ by a factor of two and
varied the time taken to mature.

With these growth equations it was still true (as
when α! 1 in equation (1)) that when the animal
spends a long time maturing to a large size, growth
ratios consistently decrease with each moult, and that
when it matures earlier to a smaller size, growth ratios
consistently increase with each moult. However, in
intermediate cases, where before growth ratios were
constant, there now is a non-monotonic change in
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growth ratio with each moult. Nevertheless in these
non-monotonic cases the changes in growth ratio are
sufficiently small that empirical data would still suggest
constancy of the growth ratio. With the particular
scaling exponents described, instar duration always
showed a consistent increase with each moult, although
this monotonicity is not inevitable if the scaling
exponents are closer to 1.

We also investigated growth equations in which the
intake rate was the sum of two different powers of size,
and others in which the scaling exponent of intake rate
changed gradually from one value to another over a
range of sizes. Still it was true that monotonicity in
growth ratio and instar duration was the norm, but
that exceptions to both could occur even with quite
smooth-looking functions. Usually any non-
monotonicity was not strong enough to be likely to be
detected empirically. We do not understand exactly
why some growth equations give rise to non-
monotonicity, so we cannot say how common such
equations are in nature. In nature there might often be
critical sizes above which a common prey species
suddenly becomes available ; in such cases all sorts of
patterns of growth ratios and instar durations could be
optimal.

A non-monotonic change of growth ratio with
successive instars implies that u

i+"
plotted against u

i
(as

in figure 2) should not now lie along a single line.
However, for the models described above where
relative metabolic costs increase or decrease with size,
the scatter about a line is so small that empirically it
would be swamped by measurement error.

(b) Size-dependent mortality

For simplicity we will restrict attention here to
mortality that becomes less likely as the animal grows,
which is probably the case in most arthropods
(survivorship curve of Slobodkin type IV). The effects
of this pattern of mortality are counter-intuitive.
Suppose for the moment that mortality only strikes
when the animal is feeding, rather than when it is
moulting. We expected that animals should tend to
rush through the early sizes when they were most
vulnerable, so that initial instar durations and growth
ratios would be reduced relative to later instars. This is
sometimes the case, but the opposite may also occur.
Animals may do best to endure the initial instars for
longer so that in later instars they are larger and thus
partially escape from mortality. Which strategy is
better depends on the parameters of the growth
equation (e.g. higher efficiency of moulting makes
them spend longer in later instars) and on how
mortality scales with size (the more concave-down the
relationship, the longer they spend in early instars).
Combining mortality that steadily decreases with size
with a power-law growth equation that would other-
wise give a monotonic change in duration and growth
ratio, can readily produce non-monotonic changes in
instar duration and growth ratio.

We have also modelled the situation when only
mortality at the moult decreases with the size of the
new instar. Our expectation here was that animals

would prolong the initial instars to avoid moulting to
small-sized instars. Our computations confirm this.
Again non-monotonic changes in instar duration and
growth ratio are optimal in some cases.

7. PREDICTING THE EFFECT OF

ENVIRONMENTAL MANIPULATIONS

WHEN GROWTH IS DISCONTINUOUS

An obvious way to test our model further is to
predict how changes to the parameters of the growth
equation will change the timing and size increase of
each moult. In particular many experiments have
manipulated food quality, which correspond to a
change in f (sometimes manipulations of crowding and
temperature might be modelled as a change in f too).
In non-experimental situations the variation in f may
be unmeasured, but we might believe, for instance,
that spiders with webs in different places will be subject
to different abundances of food. In this case we can still
predict the sort of variation in life history that should
occur if f varies ; e.g. will those spiders taking longer to
moult, moult at a larger or smaller size? Such relations
are termed norms of reaction. We emphasize here
again that our model concerns a non-stochastic
environment: the assumption is that the animal can
instantaneously estimate the food availability in its
local environment and can count on that availability
not changing.

We also consider how the animal should respond if
it hatches late in the season (an increase in t

!
) or

hatches from a larger egg (an increase in x
!
). Similarly,

if a manipulation or environmental stochasticity delays
a moult or causes one instar to be smaller than usual,
we may still predict the subsequent optimal policy by
renumbering the subsequent instars from 0 and setting
t
!

and x
!

as observed at the start of the chosen instar.
We do not consider alterations to α and ε because these
are intrinsic properties of a species that would seem
difficult to manipulate (although scope exists for
interspecific comparisons). Predation levels may be
readily manipulated in the laboratory, but it is usually
uncertain whether the animal can sense such an
environmental change and thus we cannot expect its
policy to change; however, comparisons between
populations subject to different predation levels would
be possible.

Altering f, x
!
and t

!
dictates what size is attainable if

the final moult occurs at a particular time. What time
is actually chosen will depend on how the time and size
at which the animal matures affect survival up to that
time and the reproductive success of the adult. We thus
have to specify a fitness function F(x

N
, t

N
) where x

N
and

t
N

refer to the size and calendar time at the emergence
from the final moult. We discuss various plausible
fitness functions presently. Different populations of a
species will often differ in their fitness functions, so this
is another comparison that might be made to test our
model’s predictions.

The sections following deal with predictions of
optimal x

N
and t

N
, and may appear to ignore growth

ratios and instar durations, which are the focus of the
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Figure 4. A locus of options (solid line). Each point on the

locus corresponds to a particular time taken to attain

maturity and assumes that moulting decisions are optimal

given this time constraint. Consequently the locus shows the

adult sizes attainable for each time spent growing

(parameters as in figure 5a). The dotted line shows the actual

optimal trajectory taken by an animal to attain one particular

point on this locus.

paper. However, if x
N
}x

!
increases, at least one growth

ratio must have increased. For the case of the power-
law growth equation and size-independent mortality
this implies that all u

i
will have increased. Similarly, for

this case, an increase of t
N
®t

!
implies that all d

i
have

increased. The situation is more complex when the
number of instars is also allowed to be optimised (see
§8).

(a) Loci of maximum size attainable within a

growth period

For the moment let us consider only cases in which
mortality is independent of size and the number of
instars is fixed. If it were optimal for the final moult to
occur at some particular time, we suppose that the
optimal life history would maximize size given this time
constraint. We can plot the maximum size attainable
against the time allowed (figure 4). We call this line a
locus of options. Note that the locus is not the trajectory
taken by any one animal as it grows; it is the collection
of endpoints of an array of distinct trajectories, each
optimal given its time constraint and all with the same
parameters of the growth equation.

The locus will be the same whatever fitness function
we specify (so long as fitness increases with size). What
the fitness function does affect is which point of the
locus is optimal. We first consider how changing
parameters of the growth equation changes the
positions and shapes of these loci. Later we will
superimpose the loci onto a landscape of fitness values ;
this allows us to visualize how these changes in the loci,
or changes in the fitness functions, will affect which
point of the locus is optimal.

When α¯ 1 it is optimal to spend equal times in

each of the N juvenile instars (Appendix 2), so the locus
is

x
N

¯ x
!
[εf(t

N
®t

!
)}N]N (3)

or

ln(x
N
)¯ ln(x

!
)N ln[εf(t

N
®t

!
)}N].

We consider these loci plotted on a graph of ln(x
N
)

against t
N
. The solid lines in figure 5b show how

altering x
!
, t

!
and f changes these loci. Increasing x

!
translates the graph vertically, increasing t

!
translates

it horizontally, and increasing f increases the slope.
Figures 5 c and 5d show the loci for α¯ 0.67 and

α¯ 1.33, which we calculated numerically. For values
of α% 1 the loci resulting from a power-law growth
equation are all markedly concave-down curves. In
fact α has to be appreciably larger than 1 for the locus
to be concave up. When α¯ 1.33 the locus is concave
down when the efficiency of moulting is low (e.g. ε¯
0.2), but in part concave up when ε¯ 0.8. Increasing
t
!
still merely translates the locus horizontally (because

we have assumed that food availability does not
depend on the time of year), and increasing f again
increases the slope. Increasing x

!
now does affect the

slope of the locus : when α! 1 the gradient decreases,
when α" 1 the gradient increases, although the main
effect is still a translation upwards.

(b) Fitness functions

We will suppose that fitness depends both on adult
size (x

N
) and on how long it takes to mature (t

N
®t

!
).

A plausible set of fitness functions that we will consider
first are

F(x
N
, t

N
)¯ kxβ

N
exp[®θ(t

N
®t

!
)]. (4)

Here k is an arbitrary positive constant.
Fitness depends on the probability of surviving to

adulthood multiplied by the expected number of
offspring produced once adulthood has been reached.
exp[®θ(t

N
®t

!
)] describes the probability of surviving

to adulthood; an increased risk of not reaching
adulthood is the penalty of maturing late. We are
assuming that mortality before maturation occurs at a
constant rate of θ per day independent of size. This
term can be simplified to exp(®θt

N
), since the rest is a

constant factor independent of t
N

and so can be
subsumed into k.

xβ

N
describes how the rate of production of offspring

scales with adult mass (x
N
) ; this represents the benefit

of maturing at a larger size. Reiss (1989) reviews studies
of β, reporting a coefficient for Asellus of 0.77 and for an
aphid species of 0.47 and 0.62. In fact we expect β to
vary in similar ways to the coefficient α, which
described how the rate of accumulation of reserves
scaled with size, only in this instance reserves are
converted to offspring rather than to growth. At least
for many hemimetabolous insects, α and β might often
be considered equal. From the rate of production of
offspring we need to convert to the expected number of
offspring produced over the lifetime of the adult. If
adults die with a constant probability ρ per unit time,
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(a) (b)

(c) (d)

Figure 5. Loci of options and norms of reaction, on a plot of size of adult (x
N
) against time of emergence of adult (t

N
).

(a) Two loci of options, each for a different food availability f (solid lines). The dashed lines are contours of equal

fitness (where θ}β¯ 0.15 in equation (4)). Where these form a tangent to a locus is the optimal time and size to

become adult ; this point is marked with a star. The dotted line is the norm of reaction, connecting all such points

obtained for different values of f ; (b) is for the same parameter values but with two extra loci showing the effect of

changing initial size (x
!
) and initial time (t

!
) ; the norm of reaction from varying x

!
is the vertical dotted line and that

from varying t
!

is the horizontal dotted line ; (c) similarly shows the effect of varying f and x
!
, but when α¯ #

$
(in (a)and (b) α¯ 1); the norm of reaction from varying t

!
is not shown but again would be horizontal. Here

θ}β¯ 0.09. (d) The corresponding loci when α¯ %

$
, but the norms of reaction are not shown because for most

parameter values it is optimal to mature either immediately or never. In all cases N¯ 5 and ε¯ 0.8. Values of f shown

are in units of mm$}day, of x
!

are in mm$, and of t
!

in days.

the expected number of offspring produced is xβ

N
}ρ. In

equation (4) the factor of 1}ρ is subsumed into the
constant k.

With such fitness functions the fitness landscape over
the [ln(x

N
), t

N
] plane is described by contours that are

straight parallel lines of the form

ln(x
N
)¯ (θ}β) t

N
ln(G}k)}β,

where G is the fitness value on that contour (figure 5a).
Moving along a contour, the benefits of the increase in
size exactly compensate the costs of the longer delay.

Now consider superimposing concave-down loci
onto such a fitness landscape (figure 5a). The point
with the highest fitness on any locus will be where the
tangent has the same gradient as the contours of equal

fitness. Anywhere along the locus to the left of this
point, where t

N
is smaller, the gradient of the locus is

steeper, so that the benefits of an increase in size
outweigh the costs of a delay. Conversely at points to
the right of this point the gradient of the locus is
shallower, so that the benefits of a size increase are
outweighed by the costs of delay; consequently it is
better to mature earlier.

In figure 5 the points on the loci where fitness is
maximized are shown by stars. The dotted lines joining
these stars are the norms of reaction. For α¯ 1 (figure
5b), when x

!
is increased, the optimal t

N
is unchanged

but x
N

increases proportionately, so that x
N
}x

!
is

unchanged. Thus both u
i
s and d

i
s are unchanged.

When t
!

is increased, the optimal x
N

is unchanged, t
N
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(a) (b)

(c) (d)

Figure 6. Fitness contours and norms of reaction for two fitness functions. (a) and (c) show contours of equal fitness ;

contours are spaced evenly on a log scale but three times as widely in (c). (a) Extra penalty on late emergence:

F¯ exp(®0.0012 t#
N
)x#

$
N
. (c) Sigmoidal increase in fitness with size : F¯ exp(®0.06 t

N
) x

N
}(x

N
125). (b) and (d)

show norms of reaction (dotted lines) corresponding to the fitness functions of (a) and (c) respectively; the loci (solid

lines) in both are the same as in figure 5 c (where, for comparison, the norms of reaction correspond to the fitness

function F¯ exp(®0.06 t
N
) x#

$
N
). The norm of reaction due to variation in t

!
is only shown in (b), because with the

other fitness function it is horizontal (as in figure 5b).

increases, but t
N
®t

!
is unchanged, so again both u

i
s

and d
i
s are unchanged. Less obviously, increasing f

means that both x
N

and t
N

increase.
For the case of α¯ 1 and a fitness function of the

form of equation (4) it is straightforward to prove the
generality of these results algebraically. (Because all u

i
s

and d
i
s are then equal, x

N
can be substituted by an

algebraically simple function of t
N

(equation (3)) ; the
fitness function can then be differentiated with respect
to t

N
so as to locate the maximum.) Here we outline

another proof that gives a better intuitive under-
standing of the direction of the reaction norms.
Consider the gradient of the loci when α¯ 1. From
equation (3),

d[ln(x
N
)]}dt

N
¯N}[ε}f(t

N
®t

!
)}N].

If f is increased, the gradient at any particular value of
t
N

increases. At the time when with the lower f the

benefits of increased size matched the costs of increased
delay, the steeper gradient means that now by
increasing the delay the increase in benefits more than
compensates for the increase in costs. The optimum is
thus to mature later when f is increased. A similar
argument shows that it is also optimal to mature at a
larger size.

(c) Other shaped loci and fitness functions

With the loci for values of α1 1 (figure 5 c, d)
increasing f still increases the slope of the locus, again
meaning that the optimum time to mature and the size
at maturity both increase. The main effect of increasing
x
!
is again to translate the locus upwards, but now the

gradient is also affected. When α! 1 the gradient
decreases and consequently the norm of reaction due to
variation in x

!
is different in direction to the norm of

reaction due to variation in f : large sizes are predicted
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to be associated with short times to maturity. (In-
creasing x

!
decreases x

N
}x

!
, so both u

i
s and d

i
s will

decrease.)
The situation is intriguing, because an animal that

has reached a particular instar at a larger size than
normal, because of a good food availability earlier,
should then aim to mature earlier than normal. But if
this earlier food availability is indicative of future food
availability, the increase in f would favour maturing
later than normal. Which argument wins will depend
on a variety of factors, but really a full stochastic model
is necessary.

The norms of reaction in figures 5b and c arise
because the locus is concave down. When the locus is
a straight line or concave up, its gradient will never
decline to that of the linear fitness contours, and so it
will always be better to continue to grow. (Conversely,
for concave-down loci the locus would never attain the
gradient of very steep fitness contours, in which case it
is optimal to mature immediately.) Even with concave-
down loci, many possible slopes of the fitness contours
would result in the optimum not occurring until size
increases and the time elapsed to maturity are
unrealistically huge. We believe this does not happen
in real life because real fitness contours curve up at
large values of x

N
and t

N
. Being very late attracts extra

penalties (e.g. the onset of winter, senility) and being
very big is no longer such a benefit (for instance, fitness
may show a sigmoidal relationship with size, or there
may even be an optimal size above which fitness
decreases, particularly perhaps in insects which could
get too heavy to fly properly ; Bernado 1994).

In figure 6a we therefore show fitness contours when
the mortality rate increases with t# (an arbitrary
concave-up function of t), rather than with t as before.
This could also apply to the situation when offspring
born late are less likely to survive. Now the norm of
reaction due to variation in t

!
is no longer horizontal,

but x
N

decreases as t
N

increases (figure 6b). Figure 6 c

shows fitness contours when fitness shows a sigmoidal
relationship with x

N
. In this case the norm of reaction

due to variation in f is qualitatively changed: increased
x
N

is associated with decreased t
N

(figure 6d), whereas
with previous fitness functions it was associated with
increased t

N
.

Norms of reaction are also affected by size-dependent
mortality. Then the graphical approach presented
here is not applicable, so results have to be obtained
numerically by the method of Appendix 1.

Of course many other fitness functions are possible,
just as real growth equations will be more complex and
give rise to different shaped loci of options. At present
there is no point in us exploring more of these infinite
possibilities. Now that we have demonstrated that
the nature of these relations can affect what life-
history strategy is optimal, it is up to empiricists to
measure the necessary parameters for their individual
populations.

(d) Norms of reaction with other moulting

strategies

Are the predicted norms of reaction qualitatively
different if an animal follows a different moulting

Figure 7. Loci (solid lines) and norms of reaction (dotted)

when growth is continuous and dx}dt¯ fxα. Here α¯ #

$
, and

the other parameters are also as in figure 5 c.

strategy than we have predicted to be optimal (perhaps
because constrained by one of the other adaptive
influences mentioned in our review of earlier work)?
Once again as an example we suppose that the animal
might keep its growth ratio constant between instars
(Dyar’s Rule). Under this policy, when α1 1, the loci
and norms of reaction will differ from those under the
optimal policy. In this example we continue to consider
norms of reaction when the fitness function is given by
equation (4). Under the suboptimal strategy an
increase in x

!
should now slightly increase x

N
and t

N
for

most reasonable values of α and ε ; the direction of this
norm of reaction differs qualitatively from that when α
! 1 and the policy is optimal (see figure 5 c). The norm
of reaction due to variation in food availability does
not differ qualitatively when growth ratios are kept
constant from when growth ratios are optimized, but of
course the shape will differ quantitatively and in the
case of other fitness functions may also differ quali-
tatively. Observations of the norms of reaction could
therefore provide a test of our model, so long as the
form of the fitness function is also known.

(e) Comparison with continuous growth

For comparison, in figure 7 we show loci of options
when growth is not discontinuous but continuous
(dx}dt¯ fxα). (In this case the locus of options and the
growth trajectory are identical.) Note that the shapes
of these loci differ from the shapes of the loci when food
assimilation rate scales with the same value of α but
changes discontinuously. For instance when α¯ 1, in
the continuous-growth case the locus of options is
linear when ln(x

N
) is plotted against t

N
, whereas the

discontinuous-growth locus was concave down. If α is
increased the loci still change from concave down to
concave up, and the changes of the loci when food or
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initial size is altered also appear qualitatively similar to
the discontinuous-growth case. But although increasing
initial size (x

!
) still increases or decreases the optimal

time to maturity (t
N
) depending on whether α is

greater or less than 1, the optimal adult size (x
N
) is now

unchanged. Thus the optimal norms of reaction under
discontinuous growth can differ qualitatively from
those under continuous growth (cf. figures 5 c and 7).

8. OPTIMIZING NUMBER OF INSTARS

Except where we considered size-dependent mor-
tality, our optimization criterion has been to maximize
adult size given a specified time to mature, which is
equivalent to minimizing the time taken to achieve a
specified adult size. So far we have in addition specified
a fixed number of instars and we have optimized just
the duration of each instar, but in reality we expect
natural selection to optimize also the total number of
instars utilized.

Often the number of moults undergone by animals
reared in identical conditions in the laboratory differs
between the sexes, or between winged and wingless
morphs, or between populations from different environ-
ments, or between otherwise similar individuals from
the same population (Wigglesworth 1972; Daly 1985;
and references therein). It may also vary facultatively ;
for instance diet, temperature, day length, size of egg
and generation can all alter the number of moults
(Wigglesworth 1972; Daly 1985). Some insects kept on
a low diet will even continue moulting indefinitely
(Sehnal 1985) until a better diet enables them to reach
the critical size to become adult.

The same Investment Principle that we used to
explain how long should be spent in each instar also

(a) (b)

Figure 8. Loci (solid lines) and norms of reaction (dotted) when the number of instars is optimized. (a) The different

norms of reaction when N is fixed. Different values of N are optimal (shown as N*) depending on how long is spent

reaching adulthood. The locus when N is optimized is thus a combination of segments from the fixed-N loci.

(α¯ #

$
, ε¯ 0.5, f¯ 0.35 mm$}day, x

!
¯ 1 mm$.) (b) The parameters are now identical to those in figure 5 c, but N

is optimized rather than fixed at 5.

implies that there is an optimal number of instars. If an
animal moults too little, it is not making use of a
frequent increase in size to increase its feeding rate (in
figure 1 it would obviously be suboptimal to continue
till the final time as a first instar with that instar’s low
rate of reserve accumulation). Conversely, if it moults
too often, the animal is wasting its accumulated
reserves by losing them as discarded skins.

Should we then all along have been considering only
moulting strategies that also optimized the number of
instars? Only to an extent. Our earlier predictions for
how u

i
and d

i
change as the animal grows remain true

whatever the number of instars. Furthermore, as you
cannot have half an instar, over some ranges of
parameters the number of instars, even if optimized,
does not change. Also arthropods are not always
infinitely plastic about how many moults they
undergo; in many species the number of instars is
constrained to a single number or narrow range
whatever the environment. For instance no mutation
of Drosophila is known which has a different number of
instars, and constancy of the number of instars is the
rule generally in Diptera and Hymenoptera (Sehnal
1985). (Part of the reason for this may be that moults
not only serve to increase size, but also to change
shape, so the animal may be ready shape-wise to
become adult after the set number of instars even if it
is the wrong size.)

(a) The effect of environmental parameters

We first predict how the parameters f and x
!

affect
the optimal number of instars (and thus the growth
ratios and instar durations). Figure 8a shows how the
locus of options changes if we fix the number of instars
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at different values. These loci intersect, so that at
different values of t

N
it is a different locus that results

in the largest size, implying that a different number of
instars would be optimal. If we do allow the number of
instars to be optimized, the locus of options therefore
becomes a combination of segments from the loci for
fixed numbers of instars. The shape of the locus when
the number of instars is optimized is thus somewhat
different from the locus when the number of instars is
fixed (figure 8b).

Figure 8b also shows the norms of reaction resulting
from variation in f and x

!
. These consist of disjointed

segments of the norms-of-reaction curves when N is
fixed. As x

!
is decreased, x

N
decreases and t

N
increases

so long as it is not optimal to change the number of
instars ; but at some point the optimal number of
instars increases, whereupon x

N
and t

N
both increase in

a sudden jump. This would be confusing to the field
entomologist with data on adult size and time of
emergence but not on the number of instars. Such
sudden reversals in the direction of the norm of
reaction may also happen if one is considering the
growth ratio or duration of a particular instar. Ebert
(1994) did observe discontinuous jumps in the size at
maturity of Daphnia as a result of extra moults, but
supposed that they arose because earlier instar
durations were not adjusted optimally (only a correct
deduction if size and time do not both affect fitness).

In figure 8b the norm of reaction due to variation in
x
!

converges to a horizontal line, with no further
decline in x

N
, in contrast to the fixed instar case (figure

5 c). This is because, having attained a particular size
at some intermediate instar, the animal can act
subsequently just as if this were its size at the first
instar. It can add moults indefinitely and the time
already spent growing has affected only the total
mortality not the subsequent rate of mortality. (For
large N the situation becomes more comparable with
continuous growth; compare figure 7.) With fitness
functions in which time spent growing is more severely
penalized we expect the norm of reaction to decline.

In figure 8b the effect of a decrease in food
availability is a decrease in the number of instars used.
This is the opposite of what is probably the most
common response to less food (Calvert 1929; Gaines &
Campbell 1935). However, we have already seen that
we can easily predict quite different norms of reaction
with different fitness functions (e.g. figure 6d).

(b) Predictions of growth ratios ; the effect of α and ε

It is obvious how some other parameters in our
model will affect the optimal number of instars. The
higher α, the greater the benefits once size has
increased, so the more instars. Mortality associated
with moulting will tend to decrease the optimal number
of instars, as will any extra time taken up by moulting
when the animal is unable to feed. The loss of resources
in the ecdysed skin is also a penalty on moulting, so the
smaller ε is, the fewer the instars.

We now quantify these predictions, making the same
assumptions as in §3 so as to find solutions analytically.

Consider any two consecutive instars of an animal
following an optimal growth strategy with a fixed
number of instars. In Appendix 4 we analyse under
what conditions it is better to spend the same amount
of time as spent in these two instars in one instar
instead, skipping the intermediate moult. It turns out
that one instar is better if the first growth ratio under
the two-instar strategy is less than a particular value
that depends only on α and ε (we are not considering
time or mortality penalties on moulting). If the growth
ratio is less than this, and the number of instars is
unconstrained, the two instars should amalgamate into
one, so that the consequent growth ratio will lie above
the critical value. Thus a prediction from the In-
vestment Principle is that observed growth ratios lie
above the values tabulated in table 5a.

Conversely it is also true that if growth ratios are
above a particular value it is better to replace one
moult by two moults and an extra instar. Each of these
two moults has a lower growth ratio of course, so
another prediction is that growth ratios above the
values tabulated in table 5b should not be observed.
Thus values in tables 5a and b bracket the range of
growth ratios predicted if the number of instars is
optimized.

These limits can be made more stringent. Even if it
is not optimal to spend the time spent in two instars in
one instar instead, it may still be better to spend the
time spent in three consecutive instars in two instars
instead, or to replace four instars by three, etc. It turns
out that when N" 2 there is still a critical growth ratio
dependent only on α and ε (and independent of size or
food availability) below which it is better to undergo
one less moult (see Appendix 4). Conversely there is
another such critical growth ratio above which it is
better to undergo an extra moult. We explain in
Appendix 4 how to calculate these limits numerically.
Table 5 c gives the range of permissible growth ratios if
five moults are optimal. The most extreme values
apply to u

!
(when α! 1) or u

%
(when α" 1), so one

could also derive more stringent limits for growth ratios
at other instars. The minimum values in table 5 c also
apply when more than five moults are used, but then
it is again possible to derive stricter limits ; conversely
the maximum values also apply when less than five
moults are used. The larger the number of instars used,
the narrower the ranges of growth ratio predicted.
However, the narrowing of the range is not dramatic
once N is not very small : for instance, when α¯ #

$
and

ε¯ 0.8, the minimum growth ratio is 1.199 for five
instars and 1.210 for 10 instars ; the maximum is 1.277
for five instars and 1.268 for ten instars.

(c) Tests of the influence of ε on growth ratio

ε, the efficiency of moulting, is probably greatest in
maggot-like and thin-skinned holometabolous insects,
which suggests that they should use more instars and
have lower growth ratios to attain the same increase in
size as hemimetabolous insects. In fact holometabolous
insects tend to have fewer instars and higher growth
ratios (Cole 1980; and our reanalysis of the same
dataset). One potential explanation for this would be if
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Table 5.

(a) LoWer bound on groWth ratio (u"

$) if number of instars can be optimi�ed (for N& 2)

ε

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.33 1.189 1.180 1.170 1.158 1.145 1.129 1.109 1.081

1.00 1.237 1.225 1.211 1.195 1.177 1.157 1.131 1.096

0.67 1.268 1.256 1.241 1.225 1.206 1.183 1.155 1.114

0.33 1.315 1.303 1.290 1.274 1.255 1.232 1.200 1.152

(b) Upper bound on groWth ratio (u"

$
i
) if number of instars can be optimi�ed (for N& 1)

ε

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.33 1.444 1.419 1.391 1.360 1.326 1.286 1.237 1.172

1.00 1.531 1.500 1.466 1.428 1.386 1.338 1.279 1.201

0.67 1.678 1.637 1.592 1.543 1.489 1.426 1.351 1.251

0.33 2.004 1.942 1.875 1.801 1.719 1.625 1.512 1.363

(c) LoWer and upper bounds on groWth ratio (u"

$
i
) When N¯ 5, if number of instars can be optimi�ed

ε

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.33 1.246 1.233 1.220 1.204 1.187 1.166 1.140 1.103

…1.355 …1.334 …1.312 …1.287 …1.258 …1.226 …1.187 …1.135

1.00 1.315 1.297 1.278 1.257 1.233 1.205 1.170 1.124

…1.399 …1.376 …1.351 …1.323 …1.292 …1.256 …1.213 …1.154

0.67 1.348 1.331 1.312 1.291 1.266 1.236 1.199 1.147

…1.548 …1.513 …1.476 …1.435 …1.390 …1.339 …1.277 …1.197

0.33 1.375 1.363 1.349 1.332 1.311 1.284 1.248 1.191

…1.904 …1.843 …1.778 …1.707 …1.628 …1.540 …1.435 …1.302

the insect families that used the most instars tended to
spend a long time as larvae (e.g. Plecoptera), so that
they may be moulting not to increase in size but to
renew a worn-out skin. Some such other function of
moulting is also suggested by those instances where
moulting does not cause a size increase, for instance
when certain insects are kept on a starvation diet
(other examples in Calvert 1929). The limited ability
of rigid-skinned hemimetabolous insects to change
shape at a moult, and especially the lack of a pupal
stage in which a complete reorganization is possible,
may be another reason why they require more moults
to mature into adults. Also caterpillars and maggots
are vulnerable to predation and desiccation because of
their thin skins, and often exploit resources that quickly
disappear, so the extra delay associated with moulting
is another factor that will curtail how many instars
they should utilize.

We do have measurements of ε for some species, so
we can also check quantitatively whether their
observed growth ratios are compatible with the
predicted limits in table 5. Unfortunately we do not
know the value of α, but we might assume that it lies
between 0.33 and 1.33. Vollrath’s data on females of
Nephila fed a poor diet suggested a mean value of ε of
0.77 ranging between 0.68 and 0.82. Table 5 c suggests
that we should then not observe growth ratios below
about 1.14, nor above about 1.54. In fact the observed
mean growth ratio is 1.35 with the minimum of 47

observations being 1.20 and the maximum 1.48. Our
prediction is thus supported. Also encouraging is that
the higher estimate of ε (0.97) from Przibram &
Megus) ar’s data (1912) is associated with some lower
growth ratios (minimum¯ 1.03).

(d) Dyar’s Rule explained?

The predicted ranges in growth ratio in table 5 all
include uW "$ (the value for which our model predicted no
change in growth ratio through development; see
figure 2). This implies that both increases and decreases
in growth ratio through development are still to be
expected. However, because the limits to these ranges
are quite close to uW "$ we do not expect to observe
dramatic changes in growth ratio through development
when the number of instars is optimized. For instance
when the number of moults is five, α¯ #

$
and ε¯ 0.8,

the maximum change in growth ratio is either from
1.199 to 1.222 or from 1.277 to 1.255. Such small
changes in empirical data subject to measurement
error would tend to be interpreted as constancy of
growth ratio. Therefore, the Investment Principle
provides an adaptive explanation for Dyar’s Rule,
providing the number of instars is optimized.

The argument may still apply to a lesser extent if the
number of instars does not vary facultatively, but is
subject to evolutionary optimization. The fixed num-
ber of instars that has evolved will be one that is

Phil. Trans. R. Soc. Lond. B (1997)



132 J. M. C. Hutchinson and others D�ar’s Rule and the In�estment Principle

optimal given average ecological parameters. As just
noted, the Investment Principle predicts that the
optimal number of instars is one in which the growth
ratio is close to uW "$. Thus under near-average en-
vironmental conditions the growth ratio will not
change much through development, although extreme
environmental conditions will result in growth ratios
beyond the limits that we have just calculated (when a
slightly different number of instars would be optimal
but is not realized). Even then, however, the range of
growth ratios will be less than had the number of
instars been fixed at some other value.

It is worth emphasizing that it is not obvious why uW
lies within the limits in table 5. Before calculating these
limits we wondered if, for some parameter values, uW
would lie outside the limits, in which case growth ratios
would always either decrease or increase. We still have
no intuitive explanation for why in fact uW does lie
within the limits and thus why a moulting pattern close
to Dyar’s Rule is optimal.

When there is a risk of mortality associated with
moulting, or if there is a time penalty associated with
moulting, fewer moults will be optimal and thus larger
growth ratios are predicted. However, the Investment
Principle will still favour an extra instar being
incorporated if growth ratios would otherwise be
particularly large, so it will still tend to restrict the
range of growth ratios ; Dyar’s Rule may still appear to
be observed. But because growth ratios are larger than
they would be without these extra costs to moulting,
growth ratios will tend to be above uW "$. As α is usually
below 1 (as evidenced by the usual increase in instar
durations through development, see above), growth
ratios will thus usually decline through development.
Roughly constant growth ratios, but with a marked
tendency to decline slightly through development, is
exactly the pattern that we observed from table 4.
Again this argument still works if the number of instars
does not now vary facultatively but if the fixed number
used has been evolutionarily optimized.

(e) Robustness

We checked how robust these patterns were when
the growth equation incorporated a metabolic cost
scaling with size differently to energy assimilation. As
described in an earlier section, over a fivefold change in
linear dimensions, metabolic costs were changed from
25% to 45% of energy assimilation (or vice versa).
With a fixed number of instars, as the time taken to
mature is increased a monotonic increase in growth
ratio with each moult changes to a monotonic decrease;
the intermediate case is a non-monotonic change (see
§6a). When the number of instars is optimized, as the
time taken to mature is increased it can become
optimal to fit in an extra instar before the monotonic
decrease arises (with the extra instar, growth ratios
again are smaller and increase each moult). Thus, in
such cases we would mostly observe increases in growth
ratio each moult. This is opposite to the trend observed
in nature (table 4), but we have not checked enough
growth equations to be sure that others do not predict
that mostly decreases should be observed.

With non-power-law growth equations and
optimized number of instars, the range of growth ratios
predicted with a particular number of instars is no
longer independent of x

!
. However, with the growth

equations investigated, a twofold change in x
!

only
affected these ranges at the third decimal place.

Size-dependent mortality will also affect the ranges
in growth ratio predicted in table 5 and whether
increases in growth ratio are more or less likely than
decreases.

9. CONCLUSIONS

We have explained how the Investment Principle
means that there is an optimum duration of each instar
and an optimum number of instars. The question is
whether this is what determines instar durations in
nature; our review of the literature explained other
factors that might have a more important influence on
instar durations and growth ratios. In some arthropods
the Investment Principle may be totally inapplicable,
because their feeding rate does not depend on the size
of structures that grow discontinuously (Reynolds
1990).

One line of evidence is our calculation that the
selective advantage of following an optimal strategy is
typically about 1% over following Dyar’s Rule. This is
potentially enough to drive animals away from Dyar’s
Rule, but suggests that other selective consequences
could outweigh the Investment Principle. On the other
hand, the selective advantage of the Investment
Principle optimum will be much higher compared with
some alternative policies (e.g. equal time in each
instar), so we would expect the Investment Principle to
be important in restricting what other moulting
strategies can evolve.

Our observational evidence for the Investment
Principle was not particularly strong. The relation
between one growth ratio and the next differed
between different diets in the Nephila data, and there
were frequent exceptions to our prediction of mono-
tonic trends in growth ratio and instar durations. It is
impossible to say how much this failure of our
predictions is a result of poor data collected for other
purposes and of the absence of data on, for instance,
size-dependent mortality ; better data would permit a
more sophisticated model and more specific pre-
dictions. A tendency for animals to moult only at a
particular time of day will also be expected to introduce
considerable noise. Given this constraint on time spent
in an instar, it could still be the Investment Principle
that determines how many days are spent in an instar,
yet the patterns of growth ratios need not correspond
very closely to that predicted by our analytic results.
We also showed how the Investment Principle would
affect the norms of reaction expected as environmental
conditions vary or are manipulated. But it was
impossible to make general predictions because the
results depended so much on parameters that will vary
between species and have rarely been measured. The
same lack of data broadened the range of growth ratios
that we predicted if the number of instars is optimized,
but these predictions did look promising. In particular
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we now have another adaptive explanation for why
Dyar’s Rule is often observed and why deviations from
it are most commonly in the direction of a reduction of
growth ratio through development.

Only partial agreement with our predictions is to be
expected with simple models : real life is complex. This
paper has demonstrated that, in realistically com-
plicated models, parameters can be chosen to make the
Investment Principle generate realistic moulting
patterns. Therefore we hope that this paper will inspire
empiricists to gather the data to test the Investment
Principle more stringently. All there is at present are
fragments of relevant data collected on hundreds of
species, but in no species is the whole picture well
understood. Moreover, data on more than one species
are required; the answer will not be that the
Investment Principle is right or wrong, but that it is
important in this type of animal, less important in that
type, and inapplicable in others. When further data
are available it will be worth developing the theory
further, in particular to incorporate stochasticity in the
food availability.
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APPENDIX 1

This section describes the principles behind the
numerical calculation of optimal instar durations and
number of instars. We hope that workers with their
own observations can reconstruct or amend our
computer program so as to further test the ideas in this
paper. (The program is available from J.M.C.H.) The
main principle utilized is dynamic programming.

The idea is to deal with each instar at a time,
starting with the last instar and working backwards.
We consider a restricted range of calendar times and
sizes at which the animal can start each instar ; 0% t%
t
MAX

, 0% x% x
MAX

. Within these ranges we consider a
discrete two-dimensional grid of equally spaced points.
For each such point we associate a fitness (F

i
(x, t)) with

moulting to start instar i at size x and time t. In the case
of the last (Nth) instar, we directly specify this fitness,
for instance as

F
N
(x, t)¯ xβ exp(®θt).

Fitness values of earlier instars are calculated as
explained presently.

It is necessary to interpolate fitness values between
the grid points. We do this by means of cubic splines.
Programs given in Press et al. (1988) calculate the
second derivatives of F

i
(x, t) at all grid points, so that

it is then fast to interpolate fitness values at in-
termediate sizes and times. Cubic splines will only
function satisfactorily for our purposes if the fitness
function specified shows no sharp discontinuities and
no large areas of uniform value (otherwise the function
reconstructed by the cubic spline may oscillate between
the grid points, which disrupts the localization of true
maxima). Thus it is best not to specify F

N
(x¯ 0, t)¯

0, unless this is compatible with adjacent fitness values.
Also, the range of the grid must extend well beyond the
optimal x or t values. It is often more accurate to make
x
MAX

twice as large as the optimal final size than to use

the same number of grid points in a finer grid extending
less widely. To guard against artefacts caused by using
cubic splines we report only results that are consistent
when finer and wider grids are used.

Once we have thus specified the fitness values of
starting the last instar at any size and time, we consider
in turn each grid point, each specifying a starting size
and time for the penultimate instar. For each grid
point we search the range of possible instar durations to
find the maximum fitness value achievable. Each
duration will determine the time of the subsequent
moult and the size of the next (last) instar, given which
we calculate F

i
(x, t) using the cubic-spline interp-

olation. This value is discounted by predation over the
duration of the instar or at the moult, giving the fitness
value associated with a particular instar duration.

We now express this more formally in terms of the
dynamic programming equations. The fitness resulting
from spending a duration of d in the ith instar, when
that instar is commenced with a size x at time t, is

H
i
(x, t, d)¯ e−θ(x)dF

i+"
(s(x, d), td).

Here θ(x) is the size-dependent mortality rate. If the
animal enters one instar at size x and spends a duration
d in that instar, s(x, d) is the size of the next instar ;
equation (1) is an example of such a function. When no
skipping of instars is allowed the fitness under the
optimal policy is simply

F
i
(x, t)¯max

d

H
i
(x, t, d).

The duration giving the maximum fitness is found
using the routine brent( ) given in Press et al. (1988).
This routine requires the optimum duration to be
bracketed. For one end of the range we use a duration
of 0, and the other end is usually limited by the size of
the grid (i.e. 0! d! t

MAX
®t). brent( ) also requires a

value from which to start the search; we normally use
the optimum duration for an adjacent grid point. A
limitation of this numerical approach is that any local
optimum may prevent location of the true optimum.
This means that only unimodal fitness functions can be
specified for the final instar ; for instance, we would
have to amend the program for an animal that
produces some offspring if it matures in the autumn, no
offspring if it matures in the winter and some offspring
if it matures in the following spring.

Having found the optimal duration, we have the
option then to compare the associated fitness value
with the fitness value if a moult was missed completely
(i.e. the fitness value if the animal started the next
instar at the same size and time as the present instar).
This is not the same as the fitness value of moulting
after a duration of 0, as there is a cost to moulting in
terms of material lost or extra mortality. By providing
this option we can simultaneously find the optimal
number of instars as well as the optimal duration in
each (so long as we allow so many instars that at least
one is skipped).

For each starting x and t for the ith instar we store
the optimal duration (or whether it is better to skip the
instar) and the corresponding fitness value. This new
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array of fitness values is then fitted by cubic splines and
used to find the optimal durations for all starting sizes
and times in the (i®1)th instar. The process is
repeated, working backwards one instar at a time, until
the optimal policies for all starting sizes and times in
every instar have been calculated.

Having used dynamic programming to find the
optimal policy in all states, we then work forward in
time from a chosen size and time in the first instar.
Given a particular size and time of moulting into one
instar, we can read (from the stored table of optimal
policies just calculated) the appropriate duration to be
spent in that instar ; this is used to calculate the size and
time of moulting into the following instar. Dynamic
programming calculates the optimum policy only when
starting each instar at a grid point, so optimal durations
for values of size and time of moult between grid points
must be found by interpolation. Here we use linear
interpolation. For simplicity, when the optimal policy
at any of the four surrounding grid points is not a
duration but the decision to skip an instar, we skip an
instar.

In the main text we point out that it is likely that
many arthropods are constrained to moult at a
particular time of day. If we incorporate this con-
straint, the dynamic programming is simplified con-
siderably. The time grid is now in units of 24 hours and
there is no need to construct cubic splines or to find the
maxima by successive approximation. Instead it is
simple to test out all possible numbers of days to be
spent in each instar up to a maximum t

MAX
®t. Unlike

with cubic splines this method is unaffected by sharp
discontinuities and multiple local optima in the fitness
function, and so might be used even when moulting
can occur at any time of day. The time grid would then
be made finer than 24 hours.

APPENDIX 2

(a) Optimal change in growth ratio

We initially generalize the power-law growth equation
(1) to

x
i+"

¯ εx
i
h(x

i
) d

i
,

where h(x
i
) is some function of x

i
.

Consider an arthropod whose instar durations d
!
,

d
"
… d

N−"
are optimal. By this we mean that adult size is

maximized given that a specified total time is available
for growth. Let x

!
be the initial size after hatching and

x
"
, x

#
… x

N
be the sizes after successive moults under

this optimal strategy. Focus on any instar i where 0%
i%N®2. Then the size of the ith instar is x

i
and the

total duration of that instar and the next is d
i
d

i+"
. We

define T to be this total duration. Any instar durations
D

i
and D

i+"
(not necessarily optimal) such that

D
i
D

i+"
¯T must give a size X

i+#
of the (i2)th

instar which is less than or equal to x
i+#

given by the
optimal durations d

i
and d

i+"
.

For given D
i

and D
i+"

¯T®D
i

the sizes of the
(i1)th and (i2)th instar are X

i+"
and X

i+#
, where

X
i+"

¯ εX
i
h(X

i
)D

i
,

X
i+#

¯ εX
i+"

h(X
i+"

)(T®D
i
). (A 2.1)

Differentiating these with respect to D
i
gives

X!
i+"

¯ h(X
i
),

X!
i+#

¯ εX!
i+"

h«(X
i+"

)X!

i+"

(T®D
i
)®h(X

i+"
).

Eliminating X!

i+"
gives

X!
i+#

¯ h(X
i
)[εh«(X

i+"
)(T®D

i
)]®h(X

i+"
).

When X!

i+#
¯ 0, X

i+#
is maximized, implying that

D
i
¯ d

i
, D

i+"
¯ d

i+"
, X

i+"
¯ x

i+"
, and X

i+#
¯ x

i+#
. So we

set X!

i+#
¯ 0, to give

h(x
i
)[εh«(x

i+"
)(T®d

i
)]¯ h(x

i+"
).

Rearranging (A 2.1), and putting instar durations and
sizes to their optimal values, also gives

(T®d
i
)¯ (x

i+#
®εx

i+"
)}h(x

i+"
).

Thus, substituting this into the preceding equation,

ε(x
i+#

®εx
i+"

) h«(x
i+"

)}h(x
i+"

)¯ h(x
i+"

)}h(x
i
)

3 ε(x
i+#

}x
i+"

®ε) x
i+"

h«(x
i+"

)}h(x
i+"

)¯ h(x
i+"

)}h(x
i
).

In the special case of the power-law growth equation
(1), h(x)¯ fxα

3 ε(x
i+#

}x
i+"

®ε)α¯ (x
i+"

}x
i
)α

3 x
i+#

}x
i+"

¯ ε[(x
i+"

}x
i
)α®ε]}α

3 u
i+"

¯ ε(uα

i
®ε)}α. (A 2.2)

We define the function g(u) as

g(u)¯ ε(uα®ε)}α,

so that, under the optimal policy, u
i+"

¯ g(u
i
). It is

straightforward to prove the following if ε! 1 (animal
loses mass when it moults) and u" 1 (animal is
growing):

(i) if α¯ 1, then g(u)¯ u3 growth ratios constant ;
(ii) if α! 1, then g(1)" 1, g«(u)! 1, and g«(u)U 0 as

uU¢ (which implies that the graph of g(u)
against u starts above and then crosses the identity
line once as in figure 2a) ;

(iii) if α" 1, then g(1)! 1, g«(u)" 1, and g«(u)!¢
as u!¢ (which implies that the graph of g(u)
against u starts below and then crosses the identity
line once as in figure 2b).

It is then apparent from figure 2 that when α! 1 u
i
s

will converge to uW , and when α" 1 u
i
s will diverge from

uW .

(b) Optimal change in instar duration

We now consider how durations change. The power-
law growth equation (1) is

x
i+"

¯ εx
i
fxα

i
d
i

3 d
i
¯ x

i+"
®εx

i
)}(fxα

i
)

¯ (x
i+"

}x
i
®ε)}(fxα−"

i
)

¯ (u
i
®ε)}(fxα−"

i
) (A 2.3)

3 d
i+"

}d
i
¯ u"−α

i
(u

i+"
®ε)}(u

i
®ε). (A 2.4)

But equation (2) states :

u
i+"

¯ ε(uα

i
®ε)}α.
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Thus

d
i+"

}d
i
¯ u"−α

i
[(uα

i
®ε)}α]}(u

i
®ε)

¯ (1}α)(u
i
®εu"−α

i
)}(u

i
®ε).

We define the function B(u) as

B(u
i
)¯ d

i+"
}d

i
®1

3B(u
i
)¯ [u®εu"−α®α(u®ε)]}[α(u®ε)]

¯ [aε(1®α) u®εu"−α]}[α(u®ε)].

Now α(u®ε)" 0 (because we consider only α" 0, u"
1 and ε! 1).
Therefore B(u

i
)" 05 b(u)" 0, B(u)! 05 b(u)!

0, and B(u)¯ 05 b(u)¯ 0, where

b(u)¯B(u) [α(u®ε)]¯αε(1®α) u®εu"−α.

Now

b(1)¯ (1®α)(1®ε)

3 b(1)" 0 if α! 1, b(1)! 0 if α" 1, and

b(1)¯ 0 if α¯ 1 (because ε! 1). (A 2.5)

Also, differentiating with respect to u,

b«(u)¯ (1®α)(1®εu−α)

and

(1®εu−α)" 0 (because ε! 1, u" 1 and α" 0),

3 b«(u)" 0 if α! 1, b«(u)! 0 if α" 1, and

b«(u)¯ 0 if α¯ 1. (A 2.6)

Therefore, taking (A2.5) and (A2.6) together, for all
u" 1,

(i) α! 13 b(u)" 03B(u)" 03 d
i+"

" d
i

(ii) α" 13 b(u)! 03B(u)! 03 d
i+"

! d
i

(iii) α¯ 13 b(u)¯ 03B(u)¯ 03 d
i+"

¯ d
i

APPENDIX 3

This appendix develops a statistical test to investigate
whether consecutive growth ratios relate to each other
as specified by equation (2), and in particular to test
the prediction that the parameters of the relationship
do not differ between individuals or instars. We explain
in the main text that the essence of our approach is to
fit curved lines through a scatter plot such as figure 3,
and to compare the residual mean squares as in an
analysis of covariance.

Suppose that data exist recording sizes of successive
instars in J animals. Let u

i,j
denote the ratio of sizes

(weights) of instar i1 to instar i for the jth animal.
The data on all J animals need not be complete and}or
different individuals may go through different numbers
of instars before maturity. We suppose that for animal
j the n

j
instar ratios u

", j
, u

#, j
,… , u

nj, j
are recorded.

Under the exact model in the text

u
i+", j

¯ κuα

i, j
}α for i¯ 1,… , n

j
®1,

and for j¯ 1,… , J (A 3.1)

where κ¯ ε®ε}α. There are various ways in which
this relationship might be subject to error, and hence

various ways a statistical analysis might be performed.
If there is measurement error one might assume that
the relationship (A 3.1) is exact and one is observing �

i,j

rather than u
i,j

where �
i,j

¯ u
i,j

η
i,j

and η
i,j

is the
measurement error. We do not take this approach
here. Instead we assume that equation (A 3.1) is not
exact and that there is error in the true growth
increments such that

u
i+", j

¯ κuα

i, j
}αδ

ij
for i¯ 1,… , n

j
®1,

and for j¯ 1,… , J (A 3.2)

where the δ
i,j

s are independent error terms. Under this
assumption an error in the growth increment in one
instar affects the size and hence growth ratios in
subsequent instars, but given a particular growth ratio,
u
i,j

, subsequent growth is independent of past errors.

(a) Estimation of α and κ

Assuming model (A 3.2) we can estimate α and κ by
regressing u

i+"
on u

i
for all instars and animals, finding

parameter values which minimize error sum of squares.
If α and κ are estimated by a and k respectively, the
error sum of squares is

S(a, k)¯ 3
J

j="

3
nj−"

i="

[u
i+", j

®(kua

i, j
}a)]#.

Let k4 (a) be the value of k which minimizes this quantity
for fixed a. By setting δS(a, kh (a))}¥k¯ 0 it is easily seen
that

kh (a)¯
1

M
3
J

j="

3
nj−"

i="

[u
i+", j

®(kua

i+", j
}a)]

where

M¯ 3
J

j="

n
j
®J. (A 3.3)

Having minimized over k for fixed a, we can treat
S(a, kh (a)) as a function of the single variable a and seek
the value α# of a which minimizes this function. That is

S(αW , kh (αW ))¯min
a

S(a, kh (a)).

This minimization needs to be computed numerically
because S(a, kh (a)) is an awkward non-linear function of
a. The least-squares estimates of α and κ are then α# and
κW ¯ kh (α# ). The residual sum of squares after fitting the
best regression line is Q

!
¯ S(α# , κ# ).

Note that model (A 3.2) assumes that u
i+", j

is an
increasing function of u

i, j
whatever the values of α and

κ. In the limit as αU®¢, u
i+", j

becomes constant. The
model cannot fit a negative relationship between u

i+", j

and u
i, j

.

(b) Testing for other forms of the dependence of

ui+1
on u

i

Model (A 3.2) assumes that there is no effect of
instar on the relationship between consecutive growth
ratios. To test for an effect of instar we test

H
!
: α and κ constant (i.e. model A 3.2)

versus H
"
:α and κ depend on i.
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Under hypothesis H
"

the model is

u
i+", j

¯ κ
i
uα

i
i, j

}α
i
δ

i,j
.

Let J
i
denote the number of animals for which the two

instar ratios u
i, j

and u
i+", j

are recorded. The ap-
propriate estimates for αι and k

i
can be made separately

for each i as follows. For given a
i
set

kh
i
(a

i
)¯

1

J
i

3
j

(u
i+", j

®uα
i

i, j
}α

i
)

where the sum is over all animals for which u
i, j

and
u
i+", j

are recorded. Set

S
i
(a

i
, kh

i
(a

i
))¯3

j

[u
i+", j

®(kh
i
(a

i
)uα

i
i, j

}a
i
)]#.

Then the least-squares estimate αW
i
for α

i
satisfies

S
i
(α#

i
, kh

i
(αW

i
))¯min

ai

S
i
(a

i
, kh

i
(a

i
))

and the least-squares estimate for κ
i
is given by

κW
i
¯kh

i
(αW

i
).

To form the residual sum of squares let

I¯max
j

n
j
.

Then α
i
and κ

i
have been estimated for i¯ 1,…, I®1.

Set

Q
"
¯ 3

I−"

i="

S
i
(αW

i
, κW

i
).

Then to test H
!

versus H
"

test

(Q
!
®Q

"
)}(2I®4)

Q
!
}(M®2)

as F
#I−%,M−#

where M is given by equation (A 3.3).
One can instead allow α and κ to differ between

animals rather than between instars. In this case one
calculates estimates for α and κ separately for each
animal. The residual sum of squares is then the sum of
the residual sum of squares for each animal.

APPENDIX 4

This derives the minimum value of u that should be
observed if the animal can optimize the number of
moults as well as how long to spend in each instar. The
assumption is that the only penalty on moulting is the
energy and material wasted.

Consider any two consecutive instars under an
optimal strategy constrained by a fixed number of
moults. The animal starts off at size x

i
, moults once to

size x
i+"

and will attain size x
i+#

after the second moult.
The durations of the two instars are d

i
and d

i+"
. Thus

x
i+"

¯ εx
i
xα

i
d
i

and

x
i+#

¯ εx
i+"

fxα

i+"
d
i+"

.

Suppose now that the animal can skip one moult ; this
will be optimal if by spending d

i
d

i+"
in the ith instar

its size after a single moult exceeds x
i+#

. That is, one
instar is better than two if :

x
i+#

! εx
i
fxα

i
(d

i
d

i+"
)

3 εx
i+"

fxα

i+"
d
i+"

! x
i+"

fxα

i
d
i+"

3 fd
i+"

(xα

i+"
®xα

i
)! x

i+"
(1®ε)

3 fd
i+"

xα

i+"
(1®u−α

i
)! x

i+"
(1®ε)

3 (x
i+#

®εx
i+"

)(1®u−α

i
)! x

i+"
(1®ε)

3 (u
i+"

®ε)(1®u−α

i
)! 1®ε

3 (uα

i
®ε)(1®u−α

i
)!α(1®ε)

(since under the optimal policy, from (A 2.2), u
i+"

¯
ε(uα

i
®ε)}α)

3 (uα

i
)#®[1εα(1®ε)]uα

i
ε! 0. (A 4.1)

This is a quadratic in uα

i
; the larger root is of interest to

us and we call it W
i
.

If a u
i
is less than W

i
it would be better to amalgamate

the two instars into one. This is only the case if the next
instar exists to be amalgamated, so it might be possible
for the ratio of sizes at the last moult (u

N−"
) to be less

than W
i
. Now W

i
turns out to be always less than uW .

When α! 1 successive u
i
s converge to uW ; thus u

N−"
cannot be less than W

i
if u

N−#
is greater than W

i
, and u

i
s

less than W
i

should not be observed. (The values of
this limit W

i
are given in table 5a). But when α" 1, u

i
s

diverge from uW , so u
N−"

can be less than W
i
without u

N−#
being less than W

i
, and thus without amalgamation

being advantageous. To allow for this we put W
i
into

equation (A 2.2) to calculate a critical value for W
i+"

;
this is the predicted lower limit for all u

i
(used in table

5a where α " 1).
The product of W

i
and W

i+"
is a growth ratio over two

moults. For these critical values this is the same as the
growth ratio obtainable by a single moult when the
two instars are replaced by a single instar taking the
same total time. This is the largest growth ratio that is
optimal before it is better to split the instar into two.
Table 5b gives these predicted upper limits.

We now go on to generalize this result, by comparing
the size attainable in a particular time using N moults
with that attainable using N®1 moults. A simple
analytic solution is only possible when α¯ 1. In other
cases we find solutions numerically using the procedure
described below. (The computer programs are avail-
able from J.M.C.H.) The aim is to find an initial
growth ratio W"

$

!
which, using N moults in total, leads

to the same size increase in the same time as does an
initial growth ratio of �"$

!
when only N®1 moults are

used.
First we take an arbitrary value for W

!
and using

equation (A 2.2) calculate successive values of W
i
up to

W
N−"

. The product of these gives the overall growth
increase after N moults. We then search for a value �

!
such that, when we have similarly calculated successive
values of �

i
using equation (A 2.2), the product of �

!
to

�
N−#

gives the same product as W
!
to W

N−"
. To find �

!
we

use the algorithm zbrent( ) given by Press et al. (1988).
We now have a pair of initial growth ratios that yield

the same final size after either N or N®1 moults.
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However, the two strategies will normally take different
times. The time taken in the initial instar is calculated
from equation (A 2.3), using arbitrary values for x

!
and

f. The time in successive instars can be then be
calculated from equation (A 2.4) and these times
summed to give the overall time taken to reach
adulthood. Having calculated the time taken under
both strategies, W

!
is adjusted successively until the

difference in the times taken is zero. We again use
zbrent( ) to find this root. Of course every time W

!
is

adjusted a new �
!
achieving the same size increase must

be calculated. (Note that x
!

and f appear in equation
(A 2.3) but not in equation (A 2.4), so that whatever
their values the times taken using both N moults and

N®1 moults are affected by the same factor. We are
interested in the growth ratios when the two strategies
take the same time, so x

!
and f do not affect the result.)

When both the final sizes and times taken are the
same under the two strategies W

!
gives the lowest u

!
predicted if N moults are used and �

!
gives the highest

u
!
if N®1 moults are used. As with N¯ 2, it turns out

that always W
!
! uW ! �

!
; thus when α! 1 W

!
and �

!
are

also the lower and upper limit for all u
i
. When α" 1,

the lower and upper limit for all u
i
are given by W

N−"
and �

N−#
. Table 5 c gives the range of u

i
predicted when

five moults are used.
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